2020-2021年度CSNS反角白光中子源 探测器标定/辐照实验/中子计量学 进展情况汇报

2021年8月 白光用户研讨会

• 一、探测器标定情况

- 二、辐照实验情况
- 三、中子计量项目进展
- 四、结束语

1.1 探测器标定基本情况

- 2020.11-2021.07共开展探测器标定实验11次。
- 主要是大学和研究院所, 共6个单位。
- 其中单束团2次, 各48h。

2020-2021实验信息汇总

实验日期	实验名称	实验单位	实验负责人
2020年11月	不同闪烁晶体的中子探测器 标定	高能所实验物理中心	钱森
2020年11月	CLYC探测器标定	清华大学	周位鑫
2021年1月	近地轨道星载中子探测器探测 效率标定实验	山东大学 (威海)	王硕
2021年2月	辐射转换体中子响应 灵敏度标定	西核院	段宝军
2021年3月	GEM/金刚石探测器标定	高能所东莞研究部中子科学部	修青磊
2021年3月	CLYC探测器标定	清华大学	周位鑫
2021年4月	近地轨道星载中子探测器探测 效率标定实验	山东大学 (威海)	王硕
2021年7月	中子靶室探测器标定实验	中物院	杨彪
2021年7月	伽马闪烁体探测器标定实验	中物院	易龙涛
2021年7月	金刚石探测器标定	高能所东莞研究部中子科学部	修青磊
2021年7月	金刚石探测器标定	高能所东莞研究部 加速器技术部	牛梦臣

1.2 典型实验简介

下面介绍几个典型的实验

- 高能所实验物理中心 钱森, 几种闪烁晶体的中子探测器标定 GAGG晶体、CLYC晶体、LYSO-Gd晶体
- 清华大学 周位鑫, CLYC探测器标定
- 山东大学 (威海校区) 王硕, 空间硅探测器阵列中子探测效率标定
- 高能所东莞研究部中子科学部修青磊,GEM和金刚石探测器标定
- 西北核技术研究院 段宝军,辐射转换体中子响应灵敏度标定

1.2.1 中子闪烁体探测器: 钱森

- 厅二放置待测试探测器: GAGG晶体、CLYC晶体、LYSO-Gd晶体
- 读出采用光纤引出,接快响应PMT

dN/dlog10En (neutrons/cm2/s)

10⁶

10

103

102

101

1.2.2 CLYC: 周位鑫

- 厅二φ3束斑+20cm铅砖
- 示波器采集波形

CLYC: 周位鑫

1.2.3 空间硅探测器阵列: 王硕

• 厅二,探测器组原理性测试,使用mesytec外置前放和散裂中子源的获取系统

空间硅探测器阵列: 王硕

• 探测器组测试,使用Skiroc 2A集成前放芯片和FPGA开发板获取

1.2.4 GEM: 修青磊

快中子束斑成像测量(>0.2MeV)

1.2.5 金刚石探测器: 修青磊

1.2.6 辐射转换体中子响应灵敏度标定:段宝军

- 厅二, 束斑60mm; 待测样品: 光纤阵列, BaF₂复合转换体
- 采用CMOS相机和PMT

1.2.6 辐射转换体中子响应灵敏度标定: 段宝军

- 厅二, 束斑60mm; 待测样品: 光纤阵列, BaF₂复合转换体
- 采用CMOS相机和PMT

镜头+闪烁屏	中子能区/MeV	强度均值/(ADU/s)	中子通量n/cm2/s	灵敏度(ADU*n ^{-1*} cm ⁻²)
	2-3	78.19	1.42E+05	5.52E-04
	4.5-5.5	60.01	5.71E+04	1.05E-03
	7.5-8.5	36.86	2.63E+04	1.40E-03
F=85mm+	13.5-14.5	13.66	8.23E+03	1.66E-03
BC408-5mm	2.45-2.55	7.82	1.40E+04	5.59E-04
	4.95-5.05	4.42	5.70E+03	7.76E-04
	7.9-8.1	5.11	5.26E+03	9.72E-04
	13.8-14.2	4.32	3.29E+03	1.31E-03
	2-3	434.87	1.42E+05	3.07E-03
	4.5-5.5	335.33	5.71E+04	5.87E-03
	7.5-8.5	205.55	2.63E+04	7.81E-03
F=85mm+	13.5-14.5	90.71	8.23E+03	1.10E-02
闪烁光纤阵列	2.45-2.55	42.70	1.40E+04	3.05E-03
	4.95-5.05	25.33	5.70E+03	4.45E-03
	7.9-8.1	31.70	5.26E+03	6.03E-03
	13.8-14.2	29.44	3.29E+03	8.94E-03

1.3 探测器标定小结

- 1. 测点准确的能谱是标定实验的基础(中子计量项目正在推进);
- 2. 双束团对标定实验有影响(双束团解谱难题易晗已基本解决);
- 3. 单束团机时依旧较少(有望少量增加)。

二、辐照实验情况

2.1 辐照实验基本情况

- 2020.10-2021.07共开展辐照实验22次。
- 4次内部实验, 18次外部实验, 516个样品。主要是半导体器件。
- 12个单位,包括HW、HS、圣涛平等企业用户。

序 号	实验名称	开始时间	类型	用户单位	负责 人	数 量	样品	
1	HW终端单粒子效应实验	2020/10/9 8:50	用户 实验	HW终端有限公 司	杨煜	10	10个手机	
2	北京圣涛平和北京微电子 技术研究所联合测试	2020/10/16 8:40	用户 实验	北京圣涛平试 验工程技术研 究院	孙旭 朋	4	Flash,prom,sr am,vdmos	
3	HW-2012实验室存储器件 测试	2020/10/18 9:00	用户 实验	HW技术有限公 司	张富 山	2	2片内存1个服 务器主板	
4	上海安路科技单粒子效应 测试	2020/10/29 9:00	用户 实验	上海安路信息 科技有限公司	施彬	5	5块FPGA测试 板	
5	HW-HS科技单粒子效应测 试	2020/11/26 9:00	用户 实验	HWHS有限公 司	许震	2	2块SoC	

序 号	实验名称	开始时间	类型	用户单位	负责 人	数 量	样品
6	HW-HS钟强光通讯模块芯 片单粒子效应测试	2020/12/31 14:15	用户 实验	深圳市紫光同 创电子有限公 司	李泽 伟	2	2片FPGA
7	深圳紫光同创单粒子效应 测试	2021/12/31 8:15	用户 实验	深圳市HS半导 体有限公司	钟强	5	5片光通信模块
8	陈佳鑫润滑油脂辐照测试	2020/12/31 10:00	内部 实验	高能所东莞分 部	陈佳 鑫	4	4筒油脂样品
9	余洁冰焊接件辐照测试	2021/1/1 9:00	内部 实验	高能所东莞分 部	余洁 冰	2	2片焊接件
10	黄蔚玲纳米晶非晶磁合金 环中子辐照损伤测试	2021/1/21 10:00	内部 实验	高能所东莞分 部	黄蔚 玲	1	1个磁环
11	樊瑞睿能量相关单粒子翻 转测试	2021/1/23 8:40	内部 实验	高能所东莞分 部	樊瑞 睿	1	1个FPGA
12	北师大自研SiPM辐照损伤 测试	2021/1/25 15:00	用户 实验	北京师范大学	唐彬	20	20片SiPM

序 号	实验名称	开始时间	类型	用户单位	负责 人	数 量	样品	
13	HS光通信模块单粒子效应 测试	2021/1/25 14:00	用户 实验	深圳市HS半导 体有限公司	毛保 平	12	12个模块	
14	HW-IGBT器件测试	2021/3/15 15:00	用户 实验	HW技术有限公 司	杜江	27 0	270片IGBT	
15	山东大学硅像素探测器抗 辐照测试	2021/3/22 8:30	用户 实验	山东大学	李龙	2	2片硅像素芯片	
16	新疆理化所光电导开关器 件抗辐照测试	2021/4/6 8:30	用户 实验	航天八院&新 疆理化所	周东	1	1个光电导开关	
17	HW&斯达半导体FRD芯片 联合测试	2021/4/7 14:00	用户 实验	HW技术有限公 司	杨磊	12 8	128片FRD	
18	新疆理化所航天八院联合 测试大剂量离线测试	2021/4/12 14:00	用户 实验	航天八院&新 疆理化所	周东	3	3个光电导开关	

序 号	实验名称	开始时间	类型	用户单位	负责 人	数 量	样品	
19	广州地化所张万峰ArAr地 质样品辐照测试	2021/4/19 11:30	用户 实验	广州地化所	张万 峰	5	5管地质样品	
20	深圳紫光同创单粒子效应 测试	2021/4/27 14:00	用户 实验	深圳市紫光同 创电子有限公 司	李泽 伟	1	1片FPGA	
21	西北核技术研究院光电器 件辐照效应测试	2021/7/13 12:00	用户 实验	西北核技术研 究院	薛院 院	33	二极管 cmos ccd 相机	
22	深圳HS科技DIM内存单粒 子效应测试	2021/7/15 16:00	用户 实验	深圳市HS科技 有限公司	丁文 明	3	2 DIM板 1 海 思板	
	合计		4+1 8			51 6	个样品	

2.2 典型用户实验

- HW、HS企业手机、IGBT器件、光通讯模块、内存条等
- 紫光同创-FPGA、安路科技-FPGA等
- 山东大学CEPC硅像素探测器、广州地化所地质样品等

HS光通讯模块

HW服务器内存条

北师大自研SiPM辐照损伤测试

斯达半导体-FRD

广州地化所地质样品(宁常军)

新疆理化所&航天八院

2.3 内部实验

2.4 其他情况

主控制界面已更新

可以直观地显示通用辐照平台和捕集器内的样品情况

2.5 辐照实验小结

- 反角白光中子源为国民经济建设作出了重要贡献。
- 中子注量率还是不够高,单粒子效应事件率低,辐照实验时间长。
- 主控制界面已更新,实验更为便捷。

三、中子计量项目进展

探测器标定和其它物理实验的开展都需 要准确知道CSNS反角白光中子源的中子能 谱等关键性能参数。围绕白光束线的中子计 量学研究是一个基础性的科研课题。

- 技术基础项目: 散裂白光中子源飞行时间法中子能谱计量 技术研究
- 2020年项目获得批复,经费已下达。
- 研究周期4年: 2020.1~2023.12

量值溯源与传递方法

2020年11月CSNS白光源信号调试

屏栅电离室GIC存在的问题: Gamma-flash信号太强, 信号拖尾严重

◆ 前放问题: ORTEC142PC的T输出信号拖尾太长, gamma-flash和中子信 号不能快速恢复至基线, 不能用于tof定时;

♦ 信号幅度小: ¹⁰B(n,α)和⁶Li(n,α)的α粒子能量小输出幅度约20mV~40mV。

2020年11月CSNS白光源信号调试

平行板雪崩电离室PPAC: 信号正常,方案可行,进一步优化探 测器参数

3.3 2021年进展情况

GIC改进

- ▶ 根据准直器出口尺寸重新设计;
- ◆ gamma-flash影响及中子信号拖尾:选用电子漂移速度快、 阻止本领大的工作气体;选用快前放;
 - · 进一步改进薄低衬B-10镀靶及定值。

- ≻ 内径: Φ200mm
- ≻ 高度: 250mm
- ≻ 电极内径: Φ100mm
- ≻ 镀靶活性区: Φ60mm

SRIM计算的α粒子在几种气体中的射程

E _a /MeV	工作气体	射程/mm
	90%Ar+10%CH ₄	8.38
1.49 ¹⁰ R(n_q) ⁷ I i	90%Ar+10%CO ₂	7.97
	CF ₄	3.18
	90%Ar+10%CH ₄	11.88
2.05 ⁶ L i(n t) ⁴ He	90%Ar+10%CO2	11.25
	CF ₄	4.36
5.16 (²³⁹ Pu源)	90%Ar+10%CH ₄	40.73
	90%Ar+10%CO2	38.25
	CF ₄	13.98
- 10	90%Ar+10%CH ₄	44.54
5.48 (²⁴¹ Am 酒)	90%Ar+10%CO2	41.81
	CF ₄	15.27
	90%Ar+10%CH ₄	48.63
5.81 (²⁴⁴ Cm 酒)	90%Ar+10%CO2	45.63
	CF ₄	16.65

 ◆ Garfield++计算电子漂移速度和扩散系数
 ◆ 电子在CF₄中具有较快的漂移速度、较小的 扩散系数

0.16 fill ft. (Vini

◆ Simcenter MAGNET Electric程序模拟的屏栅电离室电场分布情况

55

- ◆ 电压大小对电场均匀区的影响不
- 大, Ф70mm以内电场均匀

- ◆α源调试:²⁴¹Am源、²³⁹Pu-²⁴¹Am-²⁴⁴Cm混合源
- ◆工作气体: P10 (90%Ar-10%CH₄),流气式,气体流量: 15ml/min
- ◆阳极-栅极间距: 50mm; 栅极-阴极间距: 10mm
- ◆前放: A1422、142PC、142A和MSI-8

◆栅丝半径0.05mm,栅丝间距2mm,电场比值的临界值Zc应大于1.373 ◆Zc在2.0~2.5之间时屏栅电离室具有较好的能量分辨

- ◆ 用信号发生器ORTEC419测试了几 种前放的增益
- ◆ 较快前放142A和MSI-8的T输出增 益都较小,目前正在进一步调试中

输入信号幅 值/mV	前放类型	前放输出信 号幅值/mV	增益
	142PC E out	+2000	3.3
-600	142PC T out	+2000	3.3
	142A Eout	+200	0.33
	142A E out	+840	0.42
	142A Tout	-460	0.23
-2000	MPR-1 +	-640	0.32
	MPR-1 T out	+480	0.24
	A1422 E out	+480	0.24
	MSI-8 E out	3500	1.52
-2300	MSI-8 T out	-920	0.4

◆ 采用溴化硼 (BBr₃) 通过原子层沉积技术 (ALD) 制备B₂O₃靶

6µm厚Mylar膜底衬

口硼膜的表征与性能测试

- ◆1个宏循环: 250层B₂O₃+50层ZnO(保护层)
- ◆ 每个宏循环后用万分之一天平称重,见右图
- ◆ 单层B₂O₃膜厚度: 23.7ng/cm²
- ◆ 单层ZnO膜厚度: 41.9 ng/cm²
- ◆ B₂O₃镀靶总厚度: 61.62µg/cm²
- ◆硼膜的扫描电镜SEM图像表明,该ALD工艺 制作的薄膜致密,平整。

入射窗直径100mm, 灵敏区60mm

◆ 每个PPAC的时间分辨FWHM<1ns,位置分辨3mm

- ◆参照1厅现有⁶Li-Si探测器;
 ◆该束流监视器将固定安装于ES2#;
 ◆⁶Li-Si束流监视器: 2个⁶LiF镀靶,
 8个硅探测器, MSI-8前放, 真空
 穿墙件和用于监视器固定的结构
 功能件等;
 - ◆ 目前正在加工制作中。

4. 结束语

- CSNS及其反角白光中子源为我们开展探测器性能研究、辐照实验、 中子计量学和其它相关应用研究提供了很好的实验平台。
- 过去的一年是非常不平凡的一年!疫情给我们的实验安排和学术交流造成了很大的影响。希望本次线上会议,大家积极交流、分享经验和体会,有利于各个不同领域研究水平的不断提高。
- 欢迎大家对我们的工作提出意见和建议,我们将与CSNS束流扩展应 用组一起,为提高CSNS Back-n的利用效率,多出成果、出好成果 而共同努力!

 本报告得到了中国原子能科学研究院计量 测试中心刘毅娜,高能所东莞分部谭志新、 易晗、樊瑞睿,西北核技术研究院段宝军、 张显鹏等同志的支持和帮助!在此一并表 示诚挚的谢意! 敬请批评指正!

谢谢大家!