Cultural heritage research with neutrons

presented by Giuseppe GORINI Milano-Bicocca University

Introduction: why neutrons

Selected analysis techniques with examples

Typical archaeometry questions:

- How was it done? (technological knowledge and manufacturing techniques)
- When was it done? (dating)
- Where was it done? (geographical localization)
- How is the object conservation status?
- Is the artefact authentic?
- Where should we dig?

A fundamental request: non destructive techniques!

Artifacts investigated

All kind of artifacts (dimensions from mm to meter): papers, ceramics, stones, marbles, glasses, metals, etc.

Neutron analysis provides information on:

- Elemental and phase Composition
- Making techniques
- Provenance Conservation and Restoration
- Genuine or fake

Neutrons vs X-rays

Attenuation coefficient (note the logarithmic scale) of elements for thermal neutrons (separate dots - black), for 1 MeV gamma-ray (dotted line), for 150 kV X-ray (solid line) and for 60 kV X-ray (dashed line)

Neutrons: advantages

- All crystalline material metal, pigments, rock, ceramics can be analysed e.g. by neutron diffraction. Archaeological object in most cases can be considered randomly oriented polycrystalline material
- Neutrons are an invaluable tool to analyse precious archaeological objects: they are non-destructive and can penetrate deep into the cultural artefact or beneath the surface of paintings, to reveal structures at the microscopic scale, phase composition or provide 3D images of the inner parts of the artefacts
- Whole artefacts can be placed in the neutron beam and analysed at room conditions, without sample preparation

Neutrons: weaknesses

- Neutrons are expensive and not easily available
- Objects need to be transported and stored safely
- Interaction of neutrons is weak therefore long measuring time (hours) needed
- Activation

Neutron-based techniques

Imaging: Neutron Radiography and Tomography

Including Energy selective tomography, Phase contrast tomography

Element analysis: Nuclear Analysis (and Imaging) Techniques

Neutron Activation Analysis (NAA) Prompt Gamma Activation Analysis (PGAA) and Imaging (PGAI) Neutron Resonance Capture Analysis (NRCA) Imaging (NRCI)

Crystallography: Scattering techniques

Neutron Diffraction Small Angle Neutron Scattering (SANS) and Ultra SANS (USANS)

Element Analysis

By neutron activation analysis

 \Rightarrow Provenance

Crystallography

By neutron diffraction

⇒ Manufacturing techniques

Neutron Radiography and Tomography

Principle of conventional tomography

Late Roman age findings (IV-V century A.D.) from ship wrecks near Sicily (Scoglio della Bottazza)

The corrosion process fully removed the metal part leaving only the calcareous matrix around the objects.

Research project in collaboration with Soprintendenza del mare, Sicily, Italy

Neutron tomography

Late Roman age findings (IV-V century A.D.) from ship wrecks near Sicily (Scoglio della Bottazza)

Tomographic reconstruction

The corrosion process fully removed the metal part leaving only the calcareous matrix around the objects.

From tiny gold filigrees...

1 CM

...to large iron tie rods

...and pearls too

End of first part of presentation

Nuclear Analysis / Imaging Techniques

Neutron Activation Analysis (NAA) Prompt Gamma Activation Analysis (PGAA) Neutron Resonance Capture Analysis (NRCA) Neutron Resonance Transmission Imaging (NRT)

NAA vs. PGAA

NAA

PGAA

100 mg - 1 g None/ PTFE bag, vial Guided beam of neutrons On-line, during the irradiation

100-5000 peaks, 12 MeV Few hours >ppm, % 1-2 days

•Sample

- •Sample preparation
- Irradiation
- Detection
- •Spectrum
- •Result turnover time
- Detection limits
- •Cooling time after irrad.

10 mg Drying, glass Reactor core Separated in time and space

10-100 peaks, 3 MeV weeks ppm-ppb Several months

Periodic Table for PGAA

H 1 1.00 794 0.3326 b 82.02 b				Eler stable i	nent isotope		Detecti 0.0 1-1 10-	on Limi [.] <mark>1-1</mark> 0 100	t [ppm]								He 3 ^{0.00014} 4 4.002602 0.007 b 1.34 b
Li 6 ^{7.5} 7 ^{92.5}	Be 9			atomic	weight		100)-1000				B 10 ²⁰ 11 ⁸⁰	C 12 ⁹⁹ 13 ^{1.1}	N 14 15 ^{.37}	0 16 17 ^{0.038} 18 ^{0.2}	F 19	Ne 20 ⁹¹ 21 ^{0.26} 22 ⁹
6.941 7 0.5 b 1 .37 b	9.0 122 0.0076 b 7.63 b			σ-ca σ-sca	pture			data				10.811 767 b 5.24 b	12.011 0.00350 b 5.551 b	1 4.00 674 1.9 b 11 .51 b	15.9 994 0.00019 b 4.232 b	18.998 0.0096 b 4.018 b	20.1 797 0.039 b 2.628 b
Na 23	Mg 24 ⁷⁹ 25 ¹⁰ 26 ¹¹			.		•						AI 27	Si 28 ⁹² 29 ^{4.7} 30 ^{3.1}	P 31	S 32 ⁹⁵ 33 34 ⁴ 36	CI 35 ⁷⁶ 37 ²⁴	Ar 3638 40 ^{99.6}
2 2.98 977 0.530 b 3 .28 b	24.305 0.063 b 3.71 b											26.9815 0.231 b 1.503 b	28.0855 0.171 b 2.167 b	30.9 738 0. 172 b 3. 312 b	32.066 0.53 b 1.026 b	35.4527 33.5 b 16.8 b	39.948 0.675 b 0.683 b
K 39 ⁹³ 40 41 ⁷	Ca 40 ⁹⁷ 42 43 44 ²	Sc 45	Ti 46 ⁸ 47 ⁷ 48 ⁷⁴	V 50 ^{0.25} 51	Cr 50 ⁴ 52 ⁸⁴ 53 ¹⁰	Mn 55	Fe 54 ⁶ 56 ⁹² 57 ² 58	Co 59	Ni 58 ⁶⁸ 60 ²⁶ 61 ^{1.1}	Cu 63 ⁶⁹ 65 ³¹	Zn 64 ⁴⁹ 66 ²⁸ 67 ⁴	Ga 69 ⁶⁰ 71 ⁴⁰	Ge 70 ²⁰ 72 ²⁷ 73 ⁸	As 75	Se 74 76 ⁹ 77 ⁸ 78 ²⁴	Br 79 ⁵¹ 81 ⁴⁹	Kr 78 80 ² 82 ¹² 83 ¹²
39.0 983 2.1 b 1.96 b	46 48 40.078 275 b 235 b	44.9 559 27.5 b 23.5 b	49 ⁵ 50 ⁵ 47.867 6.09 b 4.35 b	50.9415 5.08 b 5.10 b	54 ² 51.9 961 3.05 b 3.49 b	54.9 380 1 3.3 b 2.15b	55.845 2.56 b 11.62 b	58.9 332 37 .18 b 5.6 b	62 ^{3.6} 64 ^{0.9} 58.6 934 4 .49 b 1 8.5 b	63.546 3.78 b 8.03 b	68 ¹⁹ 70 65.39 2.75 b 6.38 b	69.723 2.75 b 6.83 b	74 ³⁷ 76 ⁸ 72.61 2.20 b 8.60 b	74.9216 4.5 b 5.50 b	80 ⁵⁰ 82 ⁹ 78.96 11.7 b 8.30 b	79.904 6.9 b 5.90 b	84 ⁵⁴ 86 ¹⁷ 83.8 25 b 7.68 b
Rb 85 ⁷² 87 ²⁸	Sr 84.86 ¹⁰ .87 ⁷	Y 89	Zr 90 ⁵² 91 ¹¹ 92 ¹⁷	Nb	Mo 92 ¹⁵ 94 ⁹ 95 ¹⁶	(Tc)	Ru 96 ⁶ 98 ² 99 ¹³ 100 ¹	Rh	Pd	Ag	Cd	113 ⁴ 115 ⁹⁶	Sn 112' 1 14 115 116'*	Sb 121 ⁵⁷ 123 ⁴³	Te	 127	Xe
85.4 678 0.38 b 6.8 b	88 ⁸³ 87.62 1.28 b 6.25 b	88.90585 1.28 b 7.70 b	94 ¹⁷ 96 ³ 91.224 0.185 b 6.46 b	9 2.90 638 1 .15 b 6.255 b	97 ¹⁰ 98 ²⁴ 99 ¹⁰ 95.94 2.48 b 5.71 b	20 b 6.3 b	101 ¹⁷ 102 ³² 104 ¹ 101.07 2.56 b 6.6 b	1 02.9 055 14 4.8 b 4.6 b	106 ²⁷ 108 ²⁷ 110 ¹² 106.42 6.8 b 4.48 b	1 07.8 682 6 3.3 b 4 .99 b	112' 113' 114' 116 112, 411 2520 b 6.5 b	114.818 193.8 b 2.62 b	120°°122°124° 118.71 0.626 b 4.892 b	121.76 4.91 b 3.90 b	125 126° 128° 130 ° 127.6 4.7 b 4.32 b	126.90447 6.15 b 3.81 b	130°131°132° 134°938° 131.29 23.9 b -
Cs 133	Ba 130 132 134° 135'	La 138 139 ^{99.9}	Hf 174 176⁵177 ¹⁹	Ta 180 181 ^{99.99}	W 180 182 ²⁶	Re 185 ³⁷ 187 ⁶³	Os 184 186° 187°	ir 191 ³⁷ 193 63	Pt 190 192 ¹ 194 ³³	Au 197	Hg 196 198° 199″	TI 203 ³⁰ 205 ⁷⁰	Pb 204 ¹ 206 ²⁴	Bi 209	(Po) (209)	(At) (210)	(Rn) (222)
13 2.90 545 2 9.0 b 3 .90 b	136' 137'' 138 ² 137.327 1.1 b 3.38 b	1 38.9 055 8 .97 b 9 .66 b	178 ²⁷ 179 ¹⁴ 180 ³⁵ 178.49 104.1 b 10.2 b	1 80.9 497 2 0.6 b 6.01 b	183 ¹⁴ 184 ³¹ 186 ²⁹ 183.84 18.3 b 4.60 b	186.207 89.7 b 11.5 b	188'°189'°190°° 192'' 190.23 1 6.0 b 1 4.7 b	192.217 425 b 14 b	195 ³⁴ 196 ²⁵ 198 ⁷ 195.08 1 0.3 b 11 .71 b	19 6.96 655 98 .65 b 7 .73 b	200 ²² 201 ⁹ 202 ²⁰ 204 ⁷ 200.59 37 2.3 b 2 6.8 b	204.3833 3.43 b 9.89 b	207 ²² 208 ⁵² 207.2 0.171 b 11.12 b	20 8.98 038 0.0338 b 9.156 b		-	-
(Fr) (223)	(Ra) (226)	(Ac) (227)	104	105	106												
-	12.8 b 13 b	-															

Ce	Pr	Nd	(Pm)	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
136 138 140 ⁶⁹ 142 ¹¹ 140.115 0.63 b 2.94b	141 140.90765 11.5 b 2.66 b	142 ⁷⁷ 143° 144 ° 145° 146° 148° 150° 144.24 51 b 16.6b	(145) 168.4 b 21.3 b	144° 147° 148° 149° 150° 152 ° 154° 150.36 5922 b 39 b	151 ⁴⁸ 153 ⁵² 151.965 4530 b 9.2 b	152 154 155° 156° 157° 138 ° 160° 157.25 49700 b 180 b	159 15 8.92 534 2 3.4 b 6 .84 b	156 158 160° 161'° 162° 163° 164 ° 162.5 994 b 90.3 b	165 16 4.93 032 6 4.7 b 8 .42 b	162 164 ² 166 ³³ 167 ²³ 168 ²⁷ 170 ¹⁵ 167.26 159 b 8.7 b	169 16 8.93 421 100 b 6.38 b	168 170 [°] 17 1" 172 ^{°°} 173" 174 " 176 ^{°3} 173.04 34.8 b 23.4 b	175 ⁹⁷ 176 ³ 174.976 74 b 7.2 b
Th	(Pa)	U	(Np)	(Pu)	(Am)	(Cm)	(Bk)	(Cf)	(Es)	(Fm)	(Md)	(No)	(Lr)
232	(231)	235 ^{0.72} 238 ^{99.3}	(239)	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(261)
23 2.03 805 7 .37 b 13 .36 b	200.6 b 10.5 b	2 38.0 289 7 .57 b 8.9 b	175.9 b 14.5 b	101 7.3 b 7.7 b									

Periodic Table for NAA

3	- 4	Be NO light elements!										5	6	72	8	9	Γ
Li	Be											В	C	N	0	F	
11	12											13	14	15	16	17	Г
Na	Mg		and the second second			0.00					-	Al	Si	Р	S	CI	
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	Γ
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	
37	38	39	-40	41	42	43	44	45	46	47	48	49	50	51	52	53	
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	Γ
Cs	Ba	¹ La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	1
87	88	89	104	105							1900				2		11
Fr	Ra	² Ac	Rf	Db													
Lan	thanic	de	58	59	60	61	62	63	64	65	66	67	68	69	70	71	1
			Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
	² Actinide serie		90	91	92	93	94	95	96	97	98	99	100	101	102	103	1
Acti	inide s					1.200	-	1.0000	C	DI.	CE	Fe	Em	Md	No		

Elements routinely determined by INAA

γ spectra:

characteristic for any element used for elemental composition and isotope's identification

Elemental Analysis by PGAA

PGAA characteristics

- Non-destructive, non invasive, no preparation
- Measurement in vacuum or in air
- Good sensitivity for H, B, C, N, P, S, Cl, Cd, Sm, Gd, Hg
- Quantitative

detection limit down to \sim 10 ppb (element and object dependent)

• Acquisition time:

few minutes (B, Gd, Sm, H) – few hours (C, N, Pb...)

- Zero spatial resolution (bulk analysis)
- Output = Averaged (relative) composition of the object
- Application: archaeometry, nuclear industry, medicine,

material science, cosmo-chemistry, ...

NRT/NRCA principle

NRCA on brass object, GELINA, Geel, Belgium

Element analysis M. Blaauw, H. Postma, P. Mutti, (2002)

14/15th century Cu/Zn Benin plaque (private collection)

El.	energies used	plaque concentration
	(eV)	(g/g and 95 % conf.)
Cu	230, 579, 650, 994	0.67 ± 0.02
Zn	282, 323	0.32 ± 0.01
Pb		< 0.08
Fe	1150	0.009 ± 0.005
Sn	111	0.0079 ± 0.0007
Sb	6.22, 21.4	$(3 \pm 1)x10^{-4}$
As	47	$(6.6 \pm 1.1) \times 10^{-4}$
Ag	5.19	$(4.3 \pm 0.2) \times 10^{-4}$

$$T(E) = \frac{C_{in}}{C_{out}} = e^{-\sum_{x} n_x \sigma_{tot}(E)} R(E)$$

NRT can be as sensitive as 0.01 % w/w for selected elements relevant for CH, like Ag, Au, and as 0.5% for Cu, Sn, As

Ancient calcholitic axe blade from the near East.

E. M. Schooneveld and the ANCIENT CHARM collaboration, J. Phys. D 42 No. 15 152003 (2009)

NRT detector

- 10 * 10 array of ⁶Li-glass scintillators
- 1.8mm * 1.8mm * 9mm
- 2.5mm pitch
- Efficiency $(1 \text{keV}) = \sim 3\%$

NRT test

• Mystery stack of 4 layers

NRT test

• Thin wires of different materials

NRT Imaging (NRTI can reveal inner features in the bulk of metallic objects in a non-destructive way

Replica belt mount

(7°

H)

End of second part of presentation

Scattering techniques

Neutron Diffraction

Small Angle Neutron Scattering (SANS) Ultra SANS (USANS)

Fundamental equations of crystallography (1)

Bragg's law:

 $2d_{hkl}\sin\theta = \lambda$

d-spacing

scattering angle neutron wavelength

Measure reflections positions ⇒ interplanar spacings ⇒ size of unit cell in Å

Diffraction analysis of polycrystalline materials

Time of Flight Neutron Diffraction

- Powerful for investigating the crystal structure of the samples
- TOF: determination of neutron energy for a 'white beam' measuring their time of flight

$$E = \frac{1}{2}m_n v^2 = \frac{1}{2}m_n \left(\frac{L}{TOF}\right)^2$$

Bragg's Law

$$(TOF)_{hkl} = \frac{2m_n}{h} Ld_{hkl} sin\theta_0$$

 m_n = neutron mass

L = flight length between the moderator to the sample

ToF = time employed to cover the distance L

Italian Neutron Experimental Station INES@ISIS

Large sample holder tank (1 m³)

- 144 ³He diffraction detectors
- 9 banks
- d-spacing: 0.4-12.0 Å
- High resolution: 0.10%
 backscattering
- Beam size: 30x30mm
- Jaws to shape the beam: min 2x2mm
- Laser pointer to align the sample
- Neutron Radiography apparatus to align and scan through the sample

Roman coins

Authenticate the silver coins (264- 241 B.C. & 218-202 B.C.) – During 2nd century BC large amount of counterfeit money was introduced

Aucurium

- 100% Silver
- **AUTHENTIC!**

Mime

- Copper: 79.247 %
- Silver: 18.329 %
- Cuprite: 2.424 %

FAKE!

Celtic Silver coin from northern Italy

- The first imitation shows a Ag content similar to the original dracma
- Ag content allow us to establish a relative chronology
- We can now try to understand the comparison between celtic coins and the greek ones

J. Corsi et al, NINMACH, 9th-12th September 2013

Identification of the forging methods of Japanese swords from the Ancient Sword (Koto) Age to modern times (Gendaito). A non destructive study through neutron diffraction

Francesco Grazzi

Consiglio Nazionale delle Ricerche, Istituto Sistemi Complessi

Japanese sword: historical introduction

In Koto age five forging traditions were born and co-existed together Different smelting and smithing procedures Different forging techniques

Results

Basic technological features of the five koto age sword forging traditions through neutron diffraction

Tradition	Туре	Carbon level	Treatment after quenching	# samples
Yamato	Standard	Medium all	Quick or no tempering	2(1)
Yamashiro	Standard	High at edge and tip Very low at body	No tempering	2
Bizen	Mass production	Low at edge Wrought iron at body	No tempering	4
Bizen	High quality	High at edge Low at body	No tempering	1
Sohshu	Type a	Very high all	Long tempering	1
Sohshu	Type b	High at edge and tip Low at body	No tempering	2
Mino	Undetermined	Medium at edge Low at body	Short tempering	1

Final Remarks

Neutrons are a well suited tool in support of heritage science *Further developments: Phase contrast / energy selective imaging High resolution resonance neutron tomography*

Integrated analysis: use of complementary techniques (e.g. n+X) is best