Compton polarimeter for CEPC

CEPC Energy Calibration Group 30 August 2021

The CEPC Day, Bejing

Outline

- Motivation
- Discussion of physical principle in Compton polarimeter
- Layout for CEPC Compton polarimeter
- Measurement result on Z pole
 - 10% transverse polarization
 - statistical error
 - systematic uncertainty
- Summary and outlook

Motivation of CEPC Z-pole polarized beam program

Transversely polarized beams in the ARC

- beam energy calibration via the resonant depolarization technique(Accuracy 10^{-6})
 - Essential for precision measurements of Z mass
 - Obtain momentum compaction factor
 - Monitor machine stability
- CP violation
- study extra dimensions in indirect searches for massive gravitons
- At least 5% ~ 10% transverse polarization

Electron Polarimetry Techniques

Some techniques for measuring electron beam polarization

- Touscheck lifetime measurement
 - Based on measuring the lifetime of polarized electron beams and non-polarized electron beams
 - The Touschek effect is not the most paramount contribution to the lifetime in CEPC
 - Large than <u>300 hours on Z pole, the increase of beam lifetime based on beam polarization is too slow to measure</u>
- Mott scattering: $\vec{e} + Z \rightarrow e$
 - The system is relatively simple but operate restricted <u>below 10MeV beam energy</u>
 - only for transverse polarization measurement
- Moller scattering: $\vec{e} + \vec{e} \rightarrow e + e$
 - Transverse polarization and longitudinal polarization of electron/positron beams can be measured
 - Invasive measurements by using the solid target
 - Low current electron are limited to avoid depolarization effect due to the target heat.
- Compton scattering: : $\vec{e} + \vec{\gamma} \rightarrow e + \gamma$
 - applied for polarimetry at high-energy colliders involves HERA, LEP, ILC, FCC and so on
 - determine polarization of electron beam are mainly measuring the asymmetry of scattering particles

Compton polarimeter

Compton Polarimeter for CEPC(Z pole)

△ Compton Polarimeter

• Prospects for the Compton polarimeter system:

- Our device is in straight sections on the ring.
- The last dipole in the ARC can be used as our bending magnet of Compton polarimeter.

CEPC Z pole:	E = 45.5 GeV		
Laser :	$\omega = 1.24 eV; E_{laser} = 2.8 mJ;$ pulse length = 28ps		
Dipole parameter(CDR)	$\begin{cases} B = 70.7904Gs \\ l = 28.686m \end{cases} \rightarrow \theta_0 = 0.0013389 \text{rad}$		
Beam vacuum tube	31mm(Outer radius)		
Drift distance	• $L_1 = 60m$; $L_2 = 40m$		
Beam angle (at IP of laser and electron beam)(王毅伟)	$\sigma'_x = 1.2197 [\mu rad]$ $\sigma'_y = 0.5164 [\mu rad]$ 6		

Physics of Compton Polarimeter

• The differential cross section depends on electron polarization(ζ) and laser polarization(ξ)

The measurement method

> The MC samples

2D distribution of scattered electrons

The distribution of Y mean(\overline{Y}) vs X

The design of detector: • X*Y = 5cm*2cm; • Pixel size: $50\mu m*25\mu m$ •

resolution:14.434µm*7.217µm

✓ The transverse polarization is sensitive to the distribution of scattered electrons, especially in the Y axis.

The measurement method

The fit method

 $\overline{Y_e}|_{X_e} = P_{\perp} \Pi(X_e)$

analyzing power: $\Pi(X_e)$

- $P_{\perp} = \xi_{\frown} \zeta_{\perp}$
- ξ_{\frown} is laser circular polarization
- ζ_{\perp} is electron beam transverse polarization
- $\overline{Y_e}|_{X_e}$ is 1d distribution of scattered electrons the mean of Y per X bin
- $\Pi(X_e)$ is analyzing power: its value for 100% polarization

$$\begin{cases} \Pi(X_e), u = u^+ (物理解) \\ \Pi(X_e), u = u^- (物理解) \\ \Pi(X_e), u = \bar{u} = \frac{u^+ + u^-}{2} \end{cases}$$

Physics of Compton Polarimeter

✓ The 2d distribution of scattered electrons in detector (X_e, Y_e) correspond to (u^+, ϕ^+) or (u^-, ϕ^-)

	Fit function	Fit result
Dol6 fit	$\Pi(X_e), u = u^+$	$P_{\perp} = 0.101508 \pm 0.0020788$
P010-111 -	$\Pi(X_e), u = u^-$	$P_{\perp} = 0.101825 \pm 0.002091$
	$\Pi(X_e), u = \bar{u}$	$P_{\perp} = 0.1015222 \pm 0.002057$

 $\frac{\Delta \boldsymbol{P}}{\boldsymbol{P}} \approx 2\%$

 $\frac{\Delta \boldsymbol{P}}{\boldsymbol{P}} \approx 1.7\%$

Fit function	Fit result
$\Pi(X_e), u = u^+$	$P_{\perp} = 0.0980 \pm 0.0017$
$\Pi(\boldsymbol{X}_{\boldsymbol{e}}), \boldsymbol{u} = \boldsymbol{u}^{-}$	$P_{\perp} = 0.0990 \pm 0.0017$
$\Pi(X_e), u = \bar{u}$	$P_{\perp} = 0.0980 \pm 0.0017$

MATLAB fit result

ROOT fit result

The statistical error

 $\mathfrak{T} = \frac{f_b N_e N_{\gamma}}{2}$

 $2\pi\sigma_{x\gamma}\sigma_{y\gamma}\left[1+(\frac{1}{2}\theta_0\frac{\sigma_{z\gamma}}{\sigma_{y\gamma}})^2\right]$

The luminosity of Compton polarimeter

• The luminosity for pulsed lasers

Par.	Unit	Physics meaning	CEPC(Z pole)	
f_b		Number of bunch crossing per second	1(12000)	
N _e		Number of electrons per bunch	8×10^{10}	
P_L	W=J/s	power of the laser	0.1GW	
λ	m	Wavelength of laser	1.002µm(1.24eV)	
E _{laser}		Laser energy	2.8mJ	
Bunch length			28ps	
N_{γ}		Number of photons per laser pulse	1.4×10^{16}	
$\sigma_{ m x\gamma}/\sigma_{ m y\gamma}$	m	Rms beam size	$\sigma_{\gamma} = 160 \mu m$	
r	$cm^{-2}s^{-1}$	luminosity	$6.9676 \times 10^{33} m^{-2} \cdot s^{-1}$	
σ	barn	Cross section	393.5 <i>m</i> b	
Max. rate	s ⁻¹	Compton scattering event rate	2 . 742 × 10 ⁵ pulse ⁻¹	

• The laser is 1HZ. Compton rate = $2.742 \times 10^5 s^{-1}$

The statistic error

> The statistical error vs measurement time

The systematic uncertainty

Total

0.036849%

The systematic uncertainty

 Table 2: The systematic uncertainty of Compton polarimeter

Sources of systematic uncertainties	Δ	$\left \frac{\Delta P}{P}\right \%$
Dipole strength ($B = 70.7904Gs$)	$7.07904 \times 10^{-7}T$	0.00239%
L1=60m (Ip to detector)	1mm	0.01653%
L2=40m (Dipole to detector)	1mm	0.017929%
$\Delta \alpha$ deviation of the detector	1µrad	ignored
$\Delta oldsymbol{eta}$ deviation of the detector	1µrad	ignored
Detector placement		ignored
Total		0.036849%

Summary & Outlook

Summary

- Transverse polarization play an important role in beam energy calibration by RDP.
- Compton Polarimeter is the clear technique of choice for electron polarization at CEPC
 - measure the position asymmetry of scattered electrons
 - 2% statistical error has been achieved in 66s time
 - 0.036849% systematic uncertainty are obtained
 - Detector linear effect or electronic noise are not considered

Outlook

- longitudinal polarized beam is a powerful ingredient of determining the anomalous couplings in the electroweak physics and suppressing background in new physics searches.
- The measurement of longitudinal is essential.

Additional slides

Physics

• Compton Polarimeter involves two physics process: Compton scattering and magnetic deflection

Case 1: Compton scattering process Case 2: Compton scattering process & Magnetic deflection

The relationship between scattered energy & detector azimuthal angle (u, ψ) and the position distribution of scattered electrons (X_e, Y_e)

$$(X_e, Y_e)$$
 (u^+, φ^+) and (u^-, φ^-)

Physics

Case 1: Compton scattering process

• Scattering angle of electron θ_{ρ}

$$\theta_e = \frac{1}{\gamma} \sqrt{u(\kappa - u)}$$

$$\boldsymbol{u} = \frac{\omega}{\varepsilon}; \quad \boldsymbol{u} \in [0, \kappa] \qquad \boldsymbol{\kappa} = \frac{4E_{\gamma}E_b}{m^2}$$

u is ratio of scattered energy of photons to electrons

Detector is perpendicular to the beam (ϕ is the detector's azimuthal angle): $\begin{cases} X_e = L_1 \theta_e \cos \phi \\ Y_e = L_1 \theta_e \sin \phi \end{cases} \implies \begin{cases} u \epsilon [0, \frac{\kappa}{2}], \quad \varphi \epsilon [0, 2\pi] \\ u \epsilon [\frac{\kappa}{2}, \kappa], \quad \varphi \epsilon [0, 2\pi] \end{cases}$

Physics

Case 2: Compton scattering process + Magnetic deflection

laser

✓ Gathering two physical process together:

$$\begin{cases} \theta_x = \theta_e \cos \phi + u \theta_0 \\ \theta_y = \theta_e \sin \phi \end{cases}$$

 $u\theta_0$ is the magnetic deflection angle caused by energy loss in Compton back-scattering process.

1

 \checkmark The position of scattered electrons in detector plane is:

$$\begin{cases} X_e = L_1 \theta_e \cos \varphi + u \theta_0 L_2 \\ Y_e = L_1 \theta_e \sin \varphi \end{cases} \implies \begin{cases} \varphi \epsilon [-\frac{\pi}{2}, \frac{\pi}{2}], & u \epsilon [0, \kappa] \\ \varphi \epsilon [\frac{\pi}{2}, \frac{3\pi}{2}], & u \epsilon [0, \kappa] \end{cases}$$

About bending angle

Table 4.3.3.5: Parameters of the dual aperture dipole.

Beam center separation [mm]350Magnetic length [m]28.686Magnetic strength [Gs]373.4Gap [mm]70

• 推导偏转角和偏移量

The magnetic strength of the dipole located in last is $\frac{1}{2}B = \frac{373.4Gs}{2} = 0.01867T$

Z pole

Higgs mode

 $\frac{120GeV}{45.5GeV} = \frac{373.4Gs}{B_{z_center}}$ $B_{z_end} = \frac{1}{2}B_{z_center} = 70.7904Gs$

□ 偏转角等于圆心角
bending angle: θ1 = θ2 = l/R
□ 偏移量x: R² = L² + (R - x)²
□ Bqv = mv²/R
E = mc² → mc = E/c
R = mv²/Bqv = mv/Be = E/Bec
□ θ = l/R = 0.0013389rad

luminosity

The luminosity of pulsed laser and electron bunch

• 1 pulse laser with 1 electron bunch

$$\mathfrak{T} = \frac{N_e N_{\gamma}}{2\pi\sigma_{x\gamma}\sigma_{y\gamma}}$$

.. ..

- N_e (Number of electrons per bunch) = 8 × 10¹⁰
- About N_{γ}
 - $N_{\gamma} = \frac{E_{laser}}{\omega_{photon}}$

electron bunch length =8.5mm;

Pulse electron bunch = electron bunch length $/c = \frac{8.5mm}{3 \times 10^8 m/s} = 28 \text{ps}$ Considering the not destroy the mirrow: the laser power is 0.1GW $E_{laser} = P * t = 0.1\text{GW} * 28 \text{ps} = 2.8 \times 10^{-3} J = 2.8 mJ$ The number of 1 pulsed laser is:

$$N_{\gamma} = \frac{E_{laser}}{\omega_{photon}} = \frac{2.8 \times 10^{-3} J}{1.24 \times 1.6 \times 10^{-19} J} = 1.4 \times 10^{16}$$

• The luminosity of 1 pulse laser with 1 electron bunch:

$$\mathfrak{T} = \frac{N_e N_{\gamma}}{2\pi\sigma_{x\gamma}\sigma_{y\gamma}} = \frac{8 \times 10^{10} \times 1.4 \times 10^{16}}{2\pi \times (160 \mu m \times 160 \mu m)} = 6.967 \times 10^{33} m^{-2} \cdot s^{-1}$$

luminosity

> The maximum rate of pulsed laser and electron bunch

• The luminosity of 1 pulse laser with 1 electron bunch:

$$\mathfrak{T} = \frac{N_e N_{\gamma}}{2\pi\sigma_{x\gamma}\sigma_{y\gamma}} = \frac{8 \times 10^{10} \times 1.4 \times 10^{16}}{2\pi \times (160\mu m \times 160\mu m)} = 6.967 \times 10^{33} m^{-2} \cdot s^{-1}$$

• The ICS cross section is :

$$\sigma(\kappa) = \frac{2\pi r_e^2}{\kappa} \left[\left(1 - \frac{4}{\kappa} - \frac{8}{\kappa^2} \right) \log(1 + \kappa) + \frac{1}{2} \left(1 - \frac{1}{(1 + \kappa)^2} \right) + \frac{8}{\kappa} \right] = 393.5mb$$

• Compton scattering event rate:

$$N = \mathfrak{T}\sigma = 6.967 \times 10^{33} m^{-2} \cdot s^{-1} \times 393.5 mb = 2.742 \times 10^5 \text{ pulse}^{-1}$$

Note that: The laser is 1HZ.

- IP: 1 bunch 1 second v = $\frac{3 \times 10^8 m/s}{100 km}$ = 3000次
- 1s内 electron 共有12000(CEPC CDR bunch nember)*3000个束团经过IP点,但是Laser无法匹配那么高的频率, 设置 laser 的频率为1Hz,则 1s内 仅仅发生一次 pulsed laser collider with 1 electron bunch
- ➤ timing system 可以给laser一个合适的trigger, 保证laser同指定的一个bunch相互作用, timing system 里面有 每个bunch的时间戳
- ▶ 正常情况下, polarization 演化的时间尺度在小时以上,甚至到几十小时,1min内的变化可以忽略。如果 是进行共振退极化实验,可以对一个指定束团,扫描一次depolarizer的频率,即进行一次resonant depolarization run,然后测量一下该束团极化度的情况,主要是看扫描depolarizer频率前后,该束团极化度 有没有变化,不关心测量过程中的极化度变化

β function

 $\beta_x = 121m$ $\beta_y = 25m$

 $\Pi(Xe)$

 $\Pi(x) = \frac{\int y \frac{d\sigma_{\perp}}{dxdy} dy}{\int \frac{d\sigma_{0}}{dxdy} dy}$

we use the $y = \sqrt{1 - x^2} \sin\theta, \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$

$$\int y \frac{d\sigma_{\perp}}{dxdy} dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{r_e^2}{(1+u)^3 \sqrt{1-x^2-y^2}} uy^2 dy = \frac{ur_e^2}{(1+u)^3} \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{y^2}{\sqrt{1-x^2-y^2}} dy = \frac{(1-x^2)ur_e^2}{(1+u)^3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta^2 dy = \frac{\pi(1-x^2)ur_e^2}{2(1+u)^3} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\theta^2 dy$$

$$\int \frac{d\sigma_0}{dxdy} dy = \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} \frac{r_e^2}{(1+u)^3\sqrt{1-x^2-y^2}} \Big(1+(1+u)^2 - 4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa})\Big) dy = \frac{\pi r_e^2 \left(1+(1+u)^2 - 4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa})\right)}{(1+u)^3}$$

•
$$\Pi(x) = \frac{(1-x^2)u}{2(1+(1+u)^2-4\frac{u}{\kappa}(1+u)(1-\frac{u}{\kappa}))}$$

•
$$x = \frac{(X_e - \sigma'_x L_1) - \frac{\kappa}{2}\theta_0 L_2}{\frac{\kappa}{2}\sqrt{(\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2}}$$

•
$$y = \frac{Y_e - \sigma'_y L_1}{\frac{L_1 \kappa}{\gamma \cdot 2}}$$

•
$$u(Xe) = \frac{2(X_e - \sigma'_x L_1)\theta_0 L_2 + \kappa(\frac{L_1}{\gamma})^2}{2((\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2)}$$

$$\Pi(Xe) = \frac{L_1}{\gamma} \frac{\kappa}{2} \left(\frac{1 - \left(\frac{(X_e - \sigma'_x L_1) - \frac{\kappa}{2}\theta_0 L_2}{\frac{\kappa}{2}\sqrt{(\frac{L_1}{\gamma})^2 + (\theta_0 L_2)^2}}\right)^2}{2\left(1 + (1 + u)^2 - 4\frac{u}{\kappa}(1 + u)(1 - \frac{u}{\kappa})\right)} \right)$$

Polarization = 10%

MATLAB fit result

	Original	0.094	0.096	0.098	0.099	0.100	0.102	0.104
u + _	fit value	0.094 (0.09061, 0.09739)	0.096 (0.09262, 0.09938)	0.098 (0.09462, 0.1014)	0.099 (0.09562, 0.1024)	0.1 (0.09662, 0.1034)	0.102 (0.09861, 0.1054)	0.104 (0.1006, 0.1074)
	SSE _{min}	1.7714228667161 64e-09	1.7637473136612 80e-09	1.7608200891526 75e-09	1.7611371001032 27e-09	1.7626411931903 49e-09	1.7692106257743 02e-09	1.7805283869045 34e-09
u ⁻ –	fit value	0.094 (0.09058, 0.09742)	0.096 (0.09259, 0.09941)	0.098 (0.0946, 0.1014)	0.099 (0.0956, 0.1024)	0.1 (0.0966, 0.1034)	0.102 (0.09859, 0.1054)	0.104 (0.1006, 0.1074)
	SSE _{min}	1.7775059062540 44e-09	1.7687843478985 92e-09	1.7647621417696 81e-09	1.7645132957901 78e-09	1.7654392878673 10e-09	1.7708157861914 80e-09	1.7808916367421 90e-09
ū	fit value	0.094 (0.0906, 0.0974)	0.096 (0.0926, 0.0994)	0.098 (0.09461, 0.1014)	0.099 (0.09561, 0.1024)	0.1 (0.09661, 0.1034)	0.102 (0.0986, 0.1054)	0.104 (0.1006, 0.1074)
	SSE _{min}	1.7742816988742 71e-09	1.7660894521276 55e-09	1.7626214705978 24e-09	1.7626590792892 02e-09	1.7638777542847 77e-09	1.7698583031885 16e-09	1.7805631173090 38e-09

• Coefficients (with 95% confidence bounds)

• $SSE = \sum w_i (y_i - \widehat{y}_i)^2$

The systematic uncertainty(1)

sources of systematic uncertainties	Δ	$\left \frac{\Delta P}{P}\right \%$
Dipole strength	$7.07904 \times 10^{-7}T$	0.00239%
L1 (Ip to detector)	1mm	0.01653%
L2 (Dipole to detector)	1mm	0.017929%
all		0.036849%

The systematic uncertainty(2)

Detector deviation

$$\begin{cases} X_e = L_1 \theta_e \cos \varphi + u \theta_0 L_2 \\ Y_e = L_1 \theta_e \sin \varphi \end{cases} \qquad \alpha(\beta) \\ \begin{cases} X_e' = X_e / \cos \alpha \\ Y_e' = Y_e / \cos \beta \end{cases} \qquad X_e(Y_e) \end{cases}$$

 The design of detector X*Y = 5cm*2cm; Pixel size: 50µm*25µm resolution:14.434µm*7.217µm

$\Delta \alpha$ deviation of the detector	Δα=0.1°	$\Delta X_e = X_e' - X_e = 1.5215 \times 10^{-6} X_e$	Detector resolution x = $50/\sqrt{12} = 14.43 \mu m$
$\Delta\beta$ deviation of the detector	Δβ=0.1°	$\Delta Y_e = Y_e' - Y_e = 1.5215 \times 10^{-6} Y_e$	Detector resolution $y = 25/\sqrt{12} = 7.22 \mu m$

• The systematic error by deviation of detector can be ignored.

The systematic uncertainty(3)

 $\tan(0.00116) = 0.001160000520299$

• The systematic error by detector placement can be ignored.

discussion

△ Compton Polarimeter

CEPC 束流管 外半径 = 31mm 由B铁参数计算 $\theta_0 = 0.0013389$ rad $\Delta x = L * \theta_0$ $L > \frac{31mm}{0.0013389$ rad} = 23.15m

问题1: L从那里算起? B铁的中心? 还是B铁的右边界?

B铁的中心 问题2: 散射电子在探测器上的分布: $\begin{cases} X_e = L_1 \theta_e \cos \varphi + u \theta_0 L_2 \\ Y_e = L_1 \theta_e \sin \varphi \end{cases}$ 不用减去 radius of tube吧?

不用