CEPC timing detector R & D --AC-coupled LGAD for 4D tracking

Institute of High Energy Physics Chinese Academy of Sciences

Zhijun Liang on behalf on IHEP-HGTD team (IHEP, Chinese Academy of Sciences)

CEPC timing detector : motivation > CEPC will produce 10¹² Z boson at Z pole → Rich flavor physics program > CEPC International Advisory Committee: one of the key recommendations → Precision timing detector should be determined as a matter of urgency > Gas detector is responsible for particle identification in flavor (dE/dx) → Challenge: 0.5-2GeV for K/pi separation, >1.5GeV for K/p separation > Timing detector is complementary to gas detector → 0-4GeV for K/pi separation, 0-8GeV for K/p separation

CEPC timing detector : Concept Timing detector: Between tracker and calorimeter \rightarrow TOF Close to SET tracker, Radius ~1.8m Target time resolution: 50 pico-second(ps) Area of detector (Barrel: ~50m², Endcap: ~20m²)

Baseline detector concept in CDR

Timing detector in Barrel region

Introduction of Low-Gain Avalanche Detectors (LGAD)

DC-LGAD

- •CEPC application: TOF
- •The DC readout
- •Time resolution ~ 30ps
- Position resolution: ~1mm
- •Dead zone : ~ 0.1 mm

Progress in DC-LGAD for CEPC •IHEP team collaborated with Institute of micro-electronics (IME) IHEP team designed and IME fabricated •Managed to fabricated 8-inch LGAD prototype wafer with good yield >99.3% yield for single pad > 50% yield for 15 × 15 channels LGAD (2 × 2 cm)

IHEP-IME LGAD wafer

IHEP-IME LGAD wafer Good yield

I-V curve for 15*15 LGAD **Good uniformity**

Performance of DC-LGAD developed by IHEP • Two type of LGAD developed by IHEP (joint R & D for CEPC and ATLAS) • Can reach 30 ps timing resolution in beta tests before irradiation

• Below 50ps after irradiation after 2.5×10^{15} fluence (HL-LHC requirement)

Introduction of Low-Gain Avalanche Detectors (LGAD)

DC-LGAD

- aAplication: LHC, CEPC TOF
- The DC readout
- Time resolution ~ 30ps
- Position resolution: ~1mm
- Dead zone : ~ 0.1mm

AC-LGAD

Application: CEPC TOF +SET (4D tracker)
AC coupled readout
Time resolution ~ 30ps
Position resolution: 10-50 um
Dead zone : 0 mm (no dead zone)

Introduction of AC-LGAD (2)

DC-LGAD

- CEPC application: **TOF**
- Cross-talk: no
- Dead zone : ~0.1mm

AC-LGAD • CEPC application: TOF +SET (4D tracker) Cross-talk: can be adjusted • Dead zone : 0 mm (no dead zone)

AC-LGAD prototype for CEPC •AC-LGAD first proposed by INFN in RD50, and first fabricated by FBK. • First AC-LGAD prototype in China by IHEP-IME in 2021.

• Try different sensor geometry

Sensors	Sensor size [µm]	AC-pad [μm
1-A7	1000	100
2-A2	2000	300
2-A1	2000	600
2-A3	2000	750
4-A1	4000	100

Laser testing for AC-LGAD

- Pico-second laser testing for AC-LGAD
- 4 channels readout board with fast amplifiers (~2GHz)
- 3D X-Y-Z stage platform (precision : ~1um)

Pico-second laser setup

D nplifiers (~2GHz) n)

4 channels fast readout board

Laser testing for AC-LGAD

- Pico-second laser testing for AC-LGAD
- 4 channels readout board with fast amplifiers (~2GHz)
- 3D X-Y-Z stage platform (precision : ~1um)
- the ballistic deficit of the signal is smaller in large AC pads

Laser shooting in the middle 4 channels has similar signal amplitude

Laser shooting in the upper right Upper right channel has larger amplitude

	ı
D	
\times	
9 1	0
	Ő
ne [ns]	

Laser testing for AC-LGAD: Readout and spatial reconstruction Position reconstruction by Discretized Positioning Circuit model (DPC)

> Input is 4 channels signal amplitude

$$X = X_0 + k_x \left(\frac{q_A + q_B - q_C - q_D}{q_A + q_B + q_C + q_D}\right) = X_0 + k_x m$$
$$Y = Y_0 + k_y \left(\frac{q_A + q_D - q_B - q_C}{q_A + q_B + q_C + q_D}\right) = Y_0 + k_y n$$

$$k_x = L \frac{\sum (m_{i+1} - m_i)}{\sum (m_{i+1} - m_i)^2} \qquad k_y = L \frac{\sum (n_{i+1} - n_i)}{\sum (n_{i+1} - n_i)^2}$$

Laser testing for AC-LGAD: spatial resolution

- The larger the AC-pad, the better the position resolution.
- the ballistic deficit of the signal is small in large AC pads
- The best resolution can reach 5µm (4-A1)

Sensors	Sensor size [µm]	AC-pad size [µm]	Picth size [µm]
4-A1	4000	1000	2000

al resolution sition resolution. in large AC pads

hit position vs Reconstructed position

Laser testing for AC-LGAD: timing resolution

- The timing resolution is about 15-17 ps
- Almost no difference for different size of the pads

Arrival time distribution

Sensors	Timing resolution (ps)
1-A7	15
2-A2	16
2-A1	17
2-A3	17
4-A1	17

Summary

DC-LGAD is joint CEPC TOF+ ATLAS HGTD R & D
 First full wafer prototyping runs (IHEP-IME)
 Full-size LGAD sensors (2 × 2 cm) with reasonable yield

AC-LGAD is a new 4D detector (position + time)
 First AC-LGAD prototype by IHEP is successful
 Picosecond laser test and reconstructed by DPC model
 The best spatial resolution ~5µm
 Timing resolution ~17ps (Laser test)

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNo}^2$$

Landau Noise term:

Signal fluctuation due to non-uniform charge deposition Minimized by reducing thickness of the sensor (50um)

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Jitter

Time walk

Need gain to increase S/N

Need thin detector to decrease trise

$$\sigma_{timewalk}^2 = \left(\left[\frac{V_{thr}}{S/t_{rise}} \right]_{\rm RMS} \right)^2$$

Corrected using the amplitude estimate with the time over threshold (TOT).

> [1] G. Pellegrini et al., NIM A765 (2014) 12 [2] H.-W. Sadrozinski et al., arXiv: 1704.08666 [3] F. Cenna et al, NIM A796 (2015) 149-153

Low-Gain-Avalanche-detector

$\sigma_{oise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$

fixed threshold

$$\sigma_t^2 = \sigma_{TimeWalk}^2 + \sigma_{LandauNo}^2$$

Landau Noise term:

Signal fluctuation due to non-uniform charge deposition Minimized by reducing thickness of the sensor (50um)

$$\sigma_{jitter}^2 = \left(\frac{t_{rise}}{S/N}\right)^2$$

Jitter

Time walk

Need gain to increase S/N

Need thin detector to decrease trise

$$\sigma_{timewalk}^2 = \left(\left[\frac{V_{thr}}{S/t_{rise}} \right]_{\rm RMS} \right)^2$$

Corrected using the amplitude estimate with the time over threshold (TOT).

> [1] G. Pellegrini et al., NIM A765 (2014) 12 [2] H.-W. Sadrozinski et al., arXiv: 1704.08666 [3] F. Cenna et al, NIM A796 (2015) 149-153

Low-Gain-Avalanche-detector

$\sigma_{oise}^2 + \sigma_{Distortion}^2 + \sigma_{Jitter}^2 + \sigma_{TDC}^2$

fixed threshold

Outlook: Testbeam with ATLAS HGTD module

► Time resolution: 45ps Position resolution: ~1mm Area : 6.5mm*6.5mm --> (2cm*4cm)

CEPC timing detector : Concept ≻ Each module size : ~5cm * 15cm ≻ Further optimization is on going

Flexible cable Flexible cable +carbon fiber structure

ASIC Readout chip

LGAD sensors