

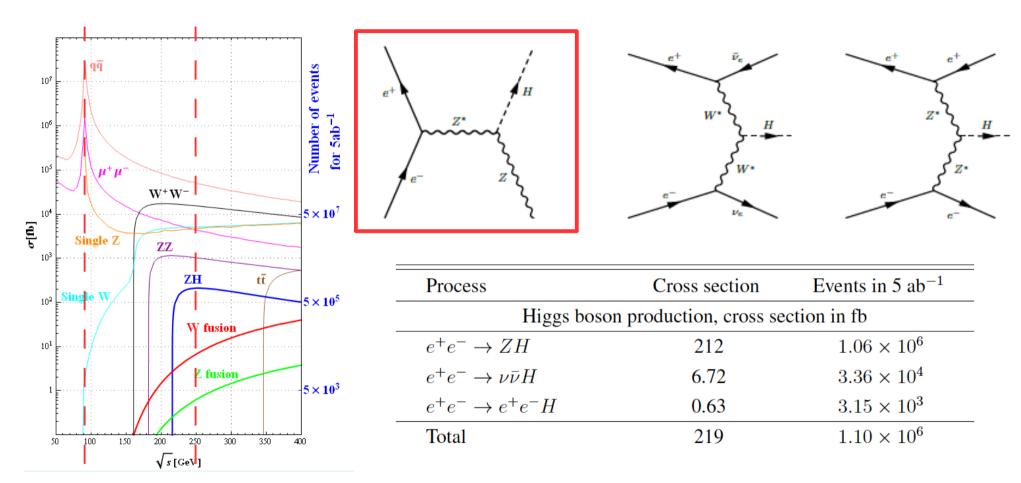
Manqi Ruan

Key figures of the CEPC-SPPC

- Tunnel ~ 100 km
- CEPC (90 250 GeV)
 - Higgs factory: 1M Higgs boson
 - Absolute measurements of Higgs boson width and couplings
 - Searching for exotic Higgs decay modes (New Physics)
 - Z & W factory: ~ 1 Tera Z boson Energy Booster(4.5Km)
 - Precision test of the SM
 - Rare decay
 - Flavor factory: b, c, tau and QCD studies
- SPPC (~ 100 TeV)
 - Direct search for new physics
 - Complementary Higgs measurements to CEPC g(HHH), g(Htt)
 - ...

11/8/2021

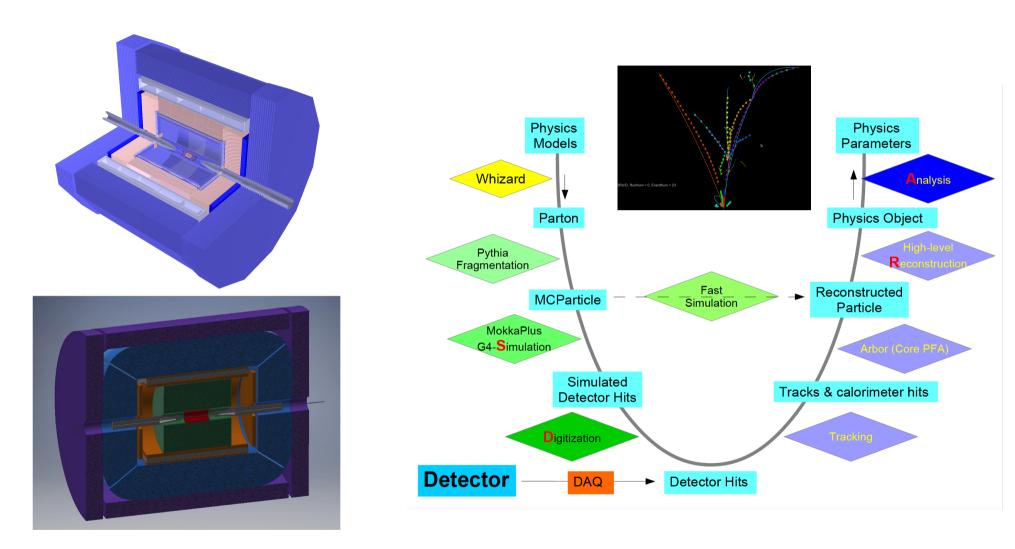
Heavy ion, e-p collision...


Complementary

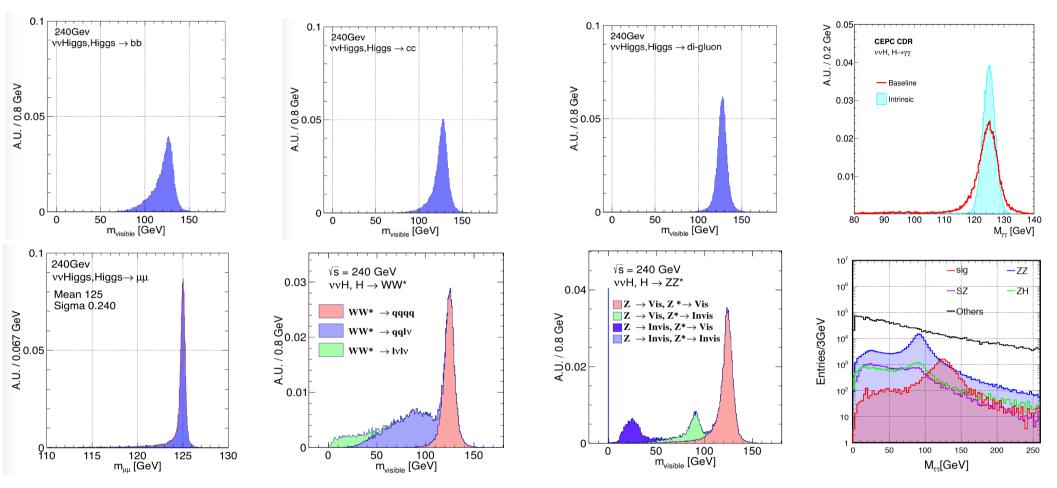
e+ e- Linac (240m)

Low Energy Booster(0.4Km)

IP3


Higgs @ CEPC

Observables: Higgs mass, CP, $\sigma(ZH)$, event rates ($\sigma(ZH, vvH)*Br(H \rightarrow X)$), Diff. distributions


Derive: Absolute Higgs width, branching ratios, couplings

Detector & Software

Full simulation reconstruction Chain functional, iterating/validation with hardware studies

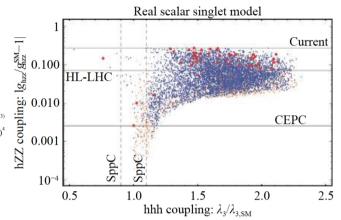
Reconstructed Higgs Signatures

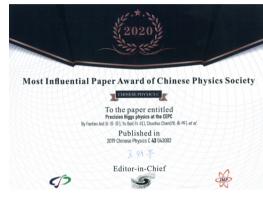
Clear Higgs Signature in all SM decay modes

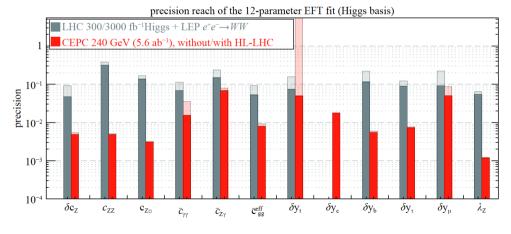
Massive production of the SM background (2 fermion and 4 fermions) at the full Simulation level

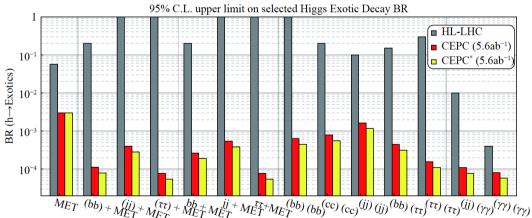
Right corner: di-tau mass distribution at qqH events using collinear approximation

11/8/2021


CEPC Detector Meeting


Higgs white paper delivered

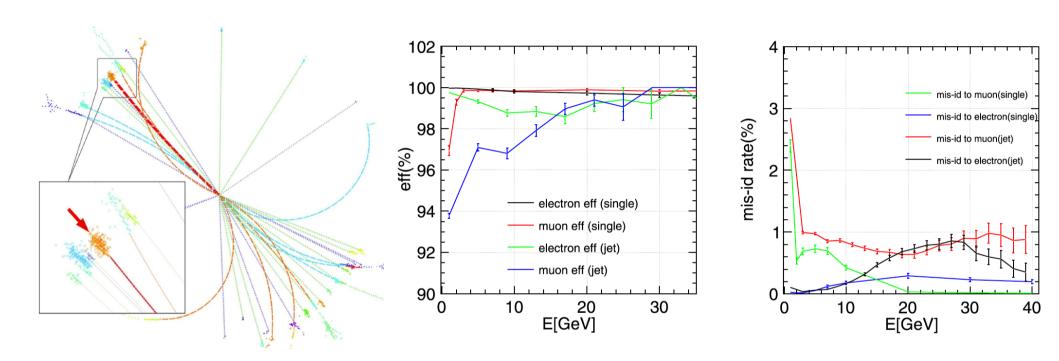

Chinese Physics C Vol. 43, No. 4 (2019) 043002


Precision Higgs physics at the CEPC*

Fenfen An(安芬芬)^{4,23} Yu Bai(白羽)⁹ Chunhui Chen(陈春晖)²³ Xin Chen(陈新)⁵ Zhenxing Chen(陈振兴)³ Joao Guimaraes da Costa ⁴ Zhenwei Cui(崔振崴) ³ Yaquan Fang(方亚泉) ^{4,6,34;1)} Chengdong Fu(付成栋) ⁴ Jun Gao(高俊)¹⁰ Yanyan Gao(高艳彦)²² Yuanning Gao(高原宁)³ Shaofeng Ge(葛韶锋)^{15,29} Jiayin Gu(顾嘉荫)^{13:2)} Fangyi Guo(郭方毅)^{1,4} Jun Guo(郭军)¹⁰ Tao Han(韩涛)^{5,31} Shuang Han(韩爽)⁴ Hongjian He(何红建)^{11,10} Xianke He(何显柯)¹⁰ Xiaogang He(何小刚)^{11,10,20} Jifeng Hu(胡继峰)¹⁰ Shih-Chieh Hsu(徐士杰)³² Shan Jin(金山)⁸ Maoqiang Jing(荆茂强)^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo(郭家铭)²¹ Peizhu Lai(赖培筑)²¹ Boyang Li(李博扬)⁵ Congqiao Li(李聪乔)³ Gang Li(李刚)^{4,34,3)} Haifeng Li(李海峰)¹² Liang Li(李亮)¹⁰ Shu Li(李数)^{11,10} Tong Li(李通)¹² Qiang Li(李强)³ Hao Liang(梁浩)⁴ Zhijun Liang(梁志均)⁴ Libo Liao(廖立波)⁴ Bo Liu(刘波)^{4,23} Jianbei Liu(刘建北)¹ Tao Liu(刘涛)¹⁴ Zhen Liu(刘真)^{26,30,4)} Xinchou Lou(娄辛丑)^{4,6,33,34} Lianliang Ma(马连良)¹² Bruce Mellado^{17,18} Xin Mo(莫欣)⁴ Mila Pandurovic¹⁶ Jianming Oian(钱剑明)^{24;5)} Zhuoni Oian(钱卓妮)¹⁹ Nikolaos Rompotis²² Manqi Ruan(阮曼奇)^{4,6)} Alex Schuy³² Lianyou Shan(单连友)⁴ Jingyuan Shi(史静远)⁹ Xin Shi(史欣)⁴ Shufang Su(苏淑芳)²⁵ Dayong Wang(王大勇)³ Jin Wang(王锦)⁴ Liantao Wang(王连涛)²⁷⁽⁷⁾ Yifang Wang(王贻芳)^{4,6} Yuqian Wei(魏彧塞)⁴ Yue Xu(许悦)⁵ Haijun Yang(杨海军)^{10,11} Ying Yang(杨迎)⁴ Weiming Yao(姚为民)²⁸ Dan Yu(于丹)⁴ Kaili Zhang(张凯栗)^{4,6,8)} Zhaoru Zhang(张照茹)⁴ Mingrui Zhao(赵明锐)² Xianghu Zhao(赵祥虎)⁴ Ning Zhou(周宁)¹⁰

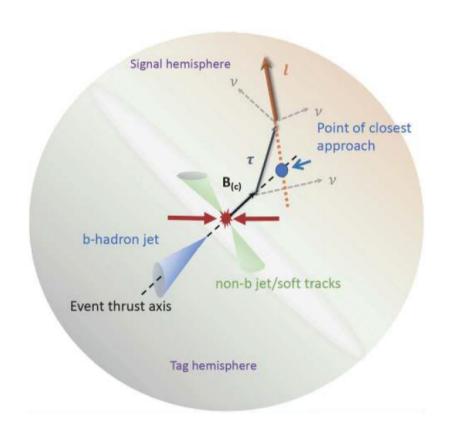
• g(HXX), g(HHH), $Br(H\rightarrow exo)$

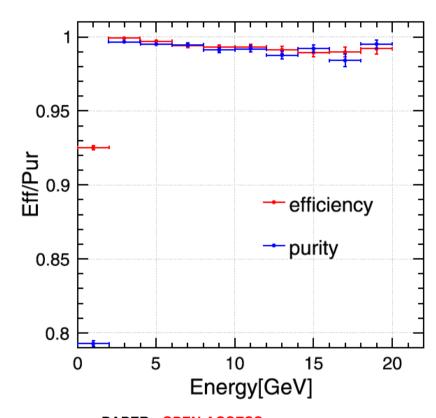
Recent Highlights


Performance

- Jet lepton
- Tau
- Jet Charge

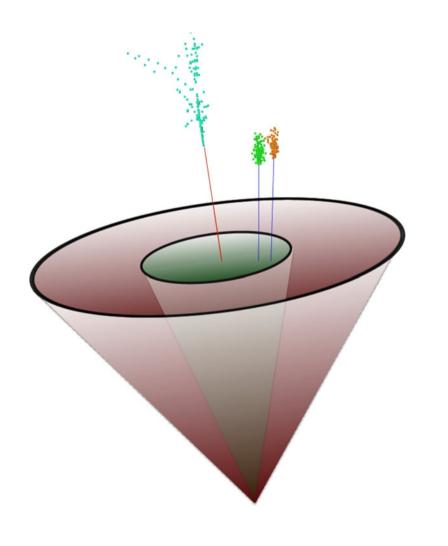
Physics

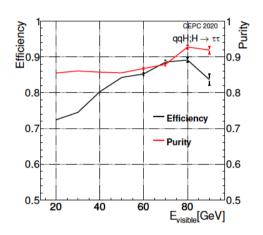

- Operation at top threshold
- H→bb, cc, gg


Jet lepton @ Z->bb

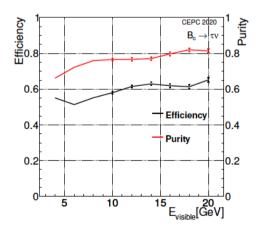
- Marginal Degrading (2021 JINST P06013)
 - Efficiency reduced up to 3% (muon @ low energy); mis-id increased to ~ 1%

At physics benchmark of Bc→tv→evv

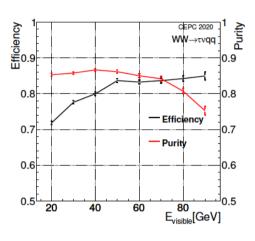

No significant degrading due to Lepton id

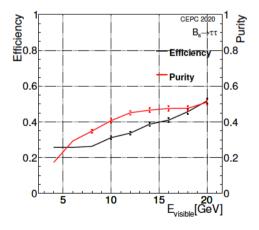

PAPER · OPEN ACCESS

Analysis of $B_c \rightarrow \tau v_{\tau}$ at CEPC *


To cite this article: Taifan Zheng et al 2021 Chinese Phys. C 45 023001

Tau reconstruction: Taurus



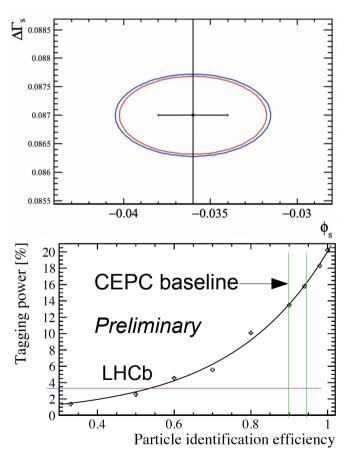

(a) $Z \to qq, H \to \tau\tau$, overall efficiency 80%, overall purity 86%

(c) $Z \to b\overline{b}$, $B_c \to \tau \nu$, overall efficiency 57%, overall purity 74%

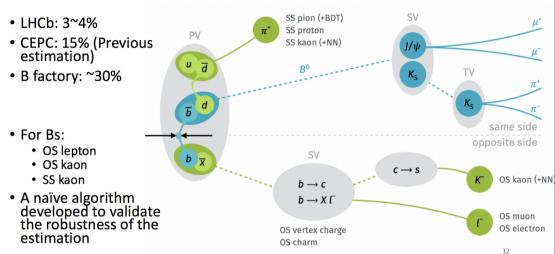
(b) $WW \rightarrow \tau \nu qq$, overall efficiency 79%, overall purity 85%

(d) $Z \to b\overline{b}$, $B_s \to \tau\tau$, overall efficiency 32%, overall purity 33%

Jet Charge measurement

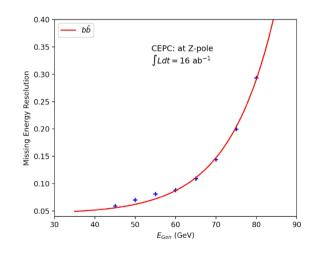


- Via leading charged particle type of each jet: effective tagging power (eff*(1-2Ω)²) = 14%/28% for inclusive Z→bb/Z→cc event
- Dependence on the heavy flavor hadron type & usage of other information: processing


CP measurement with Bs->J/psi Phi... & requires good Pid!

$$\Delta\Gamma_s \equiv \Gamma_L - \Gamma_H$$
, $\phi_s = -2 \arg(-V_{ts}V_{tb}^*/V_{cs}V_{cb}^*)$
SM: small CPV phase ϕ_s

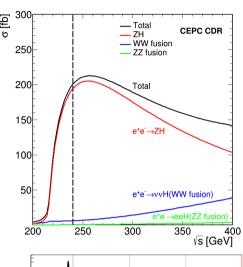
Contributions from physics beyond the SM could lead to much larger values of ϕ_s .

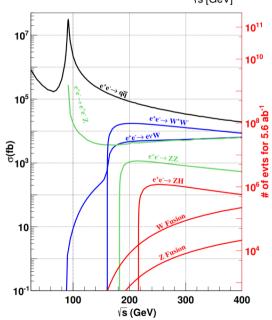


- With a decent Pid, the effective tagging power on jet Charge can be 5-6 times better than LHCb, which can compensate the statistic difference between LHCb & CEPC.
- Strong motivation to higher Luminosity at Z pole

Baseline Detector Performance for flavor physics

- Acceptance: |cos(θ)| < 0.99
- Tracks:
 - Pt threshold, ~ 100 MeV
 - $\delta p/p \sim o(0.1\%)$
- Photons:
 - Energy threshold, ~ 100 MeV
 - $\delta E/E: 3 15\%/sqrt(E)$
- Pi-Kaon separation: 3-sigma (requirement)
- Pi-0: rec. eff*purity @ Z→qq > 60% @ 5GeV
- B-tagging: eff*purity @ Z→qq: 70%
- C-tagging: eff*purity @ Z→qq: 40%
- Jet charge: eff*(1-2ω)² ~ 15%/30% @
 Z→bb/cc

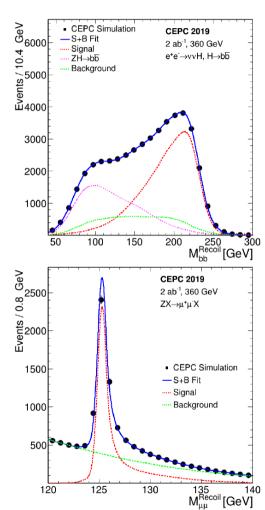

- Lepton inside jets: eff*purity @ Z→qq
 ~ 90% (energy > 3 GeV): slight
 degrading in jet
- Tau: eff*purity @ WW→tauvqq: 70%, mis id from jet fragments ~ o(1%)
- Reconstruction of simple combinations: Ks/Lambda/D with all tracks @ Z→qq: 60/75 – 80/85%
- BMR: 3.7%
- Missing Energy: Consistent with BMR.



Upgrade option: 360 GeV operation

fb	240	350	360	365	360/240
ZH	196.9	133.3	126.6	123.0	-36%
WW fusion	6.2	26.7	29.61	31.1	+377%
ZZ fusion	0.5	2.55	2.80	2.91	+460%
Total	203.6		159.0		
Total Events	1.14M		0.32M		

pb	240	350	360	365	360/240
$ee(\gamma)$	930	336	325	319	-65%
$\mu\mu(\gamma)$	5.3	2.2	2.1	2.1	-60%
$qq(\gamma)$	54.1	24.7	23.2	22.8	-57%
WW	16.7	10.4	10.0	9.81	-40%
ZZ	1.1	0.66	0.63	0.62	-43%
tt	\	0.155	0.317	0.369	
sZ	4.54	5.72	5.78	5.83	+27%
sW	5.09	5.89	6.00	6.04	+18%



Upgrade option: 360 GeV operation

Results

	240GeV, 5.6ab ⁻¹	360Ge\	√, 2ab ⁻¹
	ZH	ZH	₩H
any	0.50%	1%	١
H → bb	0.27%	0.63%	0.76%
$H \rightarrow cc$	3.3%	6.2%	11%
$H \rightarrow gg$	1.3%	2.4%	3.2%
$H \rightarrow WW$	1.0%	2.0%	3.1%
$H \rightarrow ZZ$	7.9%	14%	15%
$H \rightarrow \tau \tau$	0.8%	1.5%	3%
$H o \gamma \gamma$	5.7%	8%	11%
$H o \mu \mu$	12%	29%	40%
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	\
$\sigma(ZH) * Br(H \to Z\gamma)$	16%	25%	\
Width	2.8%	1.4	1%

Measurement of H→bb, cc, gg

• IIH: published result

- Preliminary analyses on vvH & qqH based on Full Sim
 - Anticipated accuracies at CEPC baseline
 - Optimization study
 - Flavor Tagging @ vvH & qqH
 - Color Singlet identification @ qqH

Chinese Physics C Vol. 44, No. 1 (2020) 013001

Measurements of decay branching fractions of $H \rightarrow b\bar{b}/c\bar{c}/gg$ in associated $(e^+e^-/\mu^+\mu^-)H$ production at the CEPC*

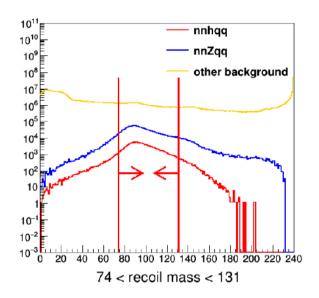
Yu Bai(白羽)^{1;1)} Chun-Hui Chen(陈春晖)^{2;2)} Ya-Quan Fang(方亚泉)^{3;3)} Gang Li(李刚)^{3;4)} Man-Qi Ruan(阮曼奇)^{3;5)} Jing-Yuan Shi(史静远)^{1,4} Bo Wang(王博)^{1,5} Pan-Yu Kong(孔攀宇)^{1,6} Bo-Yang Lan(兰博扬)¹ Zhan-Feng Liu(刘站峰)¹

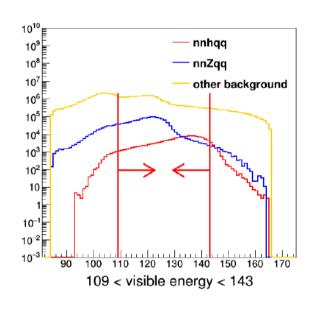
¹School of Physics, Southeast University, Nanjing 210096, China
 ²Department of Physics and Astronomy, Iowa State University, Ames 50011-3160, USA
 ³Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
 ⁴School of physics and astronomy, the University of Manchester, Oxford Rd, M13 9PL, UK
 ⁵Department of Physics, College of Sciences, Northeastern University, Shenyang 110004, China
 ⁶School of Cyber Science and Engineering, Southeast University, Nanjing 210096, China

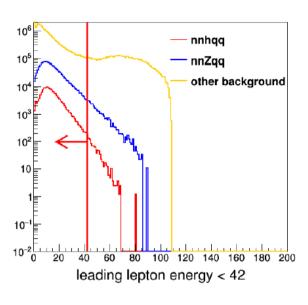
		$\mu^+\mu^-H$			e ⁺ e ⁻ H	
	$H \rightarrow b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$	$H \rightarrow b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$
accuracy	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%

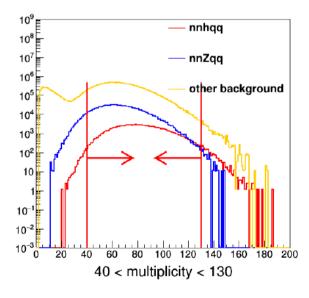
for the detail: https://arxiv.org/abs/1905.12903v2

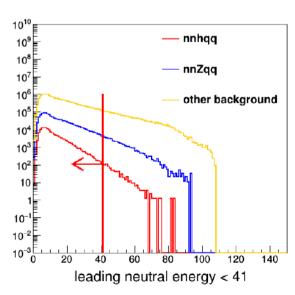
vvH

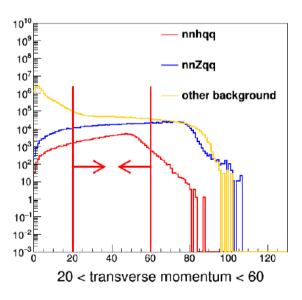

Tag H→qq

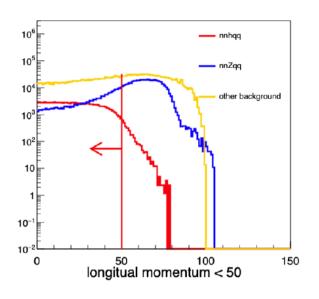

	ννHq̄q	2f	SW	SZ	WW	ZZ	Mixed	ZH	total bkg	<u>√S+B</u> (%)
total	178890	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07 <i>E</i> 6	5.08 <i>E</i> 7	6.39 <i>E</i> 6	2.18 <i>E</i> 7	961606	9.10 <i>E</i> 8	16.86
recoilMass	157822	5.11 <i>E</i> 7	2.17 <i>E</i> 6	1.38 <i>E</i> 6	4.78 <i>E</i> 6	1.30 <i>E</i> 6	1.08 <i>E</i> 6	74991	6.19 <i>E</i> 7	4.99
visEn	142918	2.37 <i>E</i> 7	1.35 <i>E</i> 6	8.81 <i>E</i> 5	3.60 <i>E</i> 6	1.03 <i>E</i> 6	6.29 <i>E</i> 5	50989	3.13 <i>E</i> 7	3.92
leadLepEn	141926	2.08 <i>E</i> 7	3.65 <i>E</i> 5	7.24 <i>E</i> 5	2.81 <i>E</i> 6	9.72 <i>E</i> 5	1.34 <i>E</i> 5	46963	2.59 <i>E</i> 7	3.59
Npfo	139545	1.66 <i>E</i> 7	2.36 <i>E</i> 5	5.24 <i>E</i> 5	2.62 <i>E</i> 6	9.07 <i>E</i> 5	4977	42751	2.09E7	3.29
leadNeuEn	138653	1.46 <i>E</i> 7	2.24 <i>E</i> 5	4.72 <i>E</i> 5	2.49 <i>E</i> 6	8.69 <i>E</i> 5	4552	42303	1.86 <i>E</i> 7	3.12
Pt	121212	248715	1.56 <i>E</i> 5	2.48 <i>E</i> 5	1.51 <i>E</i> 6	4.31 <i>E</i> 5	999	35453	2.63 <i>E</i> 6	1.37
PI	118109	53308	1.08 <i>E</i> 5	74936	729604	1.14 <i>E</i> 5	789	34279	1.11 <i>E</i> 6	0.94
Pmax	113413	47319	51976	69548	577336	104827	491	31833	883331	0.88
Y23	82647	33350	8682	49159	110365	64962	334	5159	272015	0.72
InvMass	72094	24801	3860	7036	47765	13235	213	3632	100546	0.58
BDT	64656	12867	315	3149	6081	4859	102	1810	29187	0.47

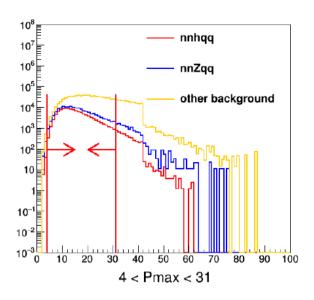

• Separate the H→bb, cc, gg & background using Flavor Tagging, etc

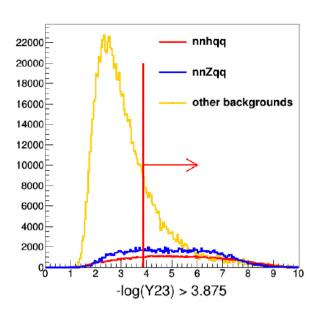

	ννΗb̄b	ννΗϲ̄	ννHgg	backgrounds
before BDT	61375	2892	7784	100546
after BDT	55257	2283	7087	29187

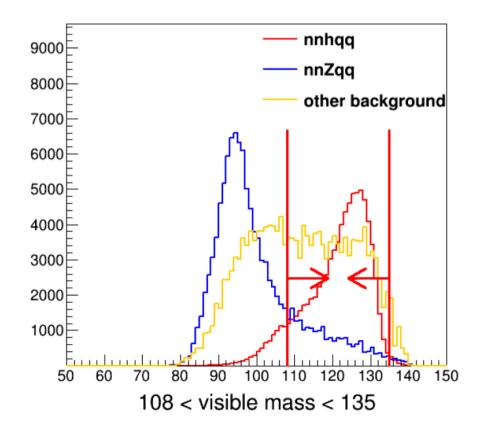

Variables & Cut to tag vvH, H→qq



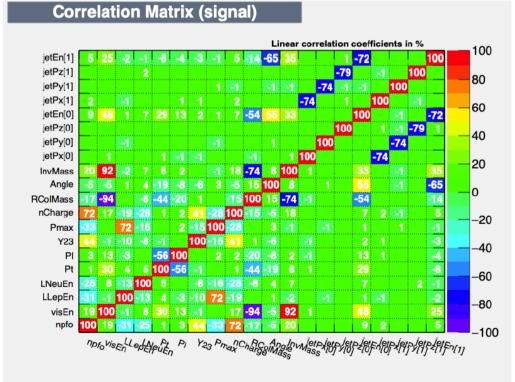




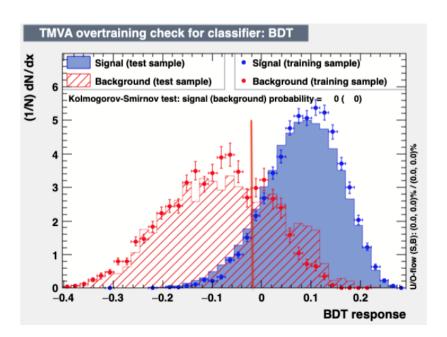




CEPC Detector Meeting



BDT for selecting $\nu\nu Hq\bar{q}$ input variables :


- recoilMass: the recoil mass of final state particles
- visEn : visible energy of final state particles
- Npfo : number of final state particles
- leadLepEn : leading lepton energy,
- leadNeuEn : leading neutral energy
- Pt : the transverse momentum of all final state particles
- PI: the longitudinal momentum of all final state particles

Relative accuracy: $0.58 \rightarrow 0.47$

The remaining events are forced into 2-jets using ee-kt

- Pmax : the maximum transverse momentum among final state particles
- Y23
- InvMass : visible mass
- num_charge : number of charge particles
- Angle : the angle between two jets
- 4 momentum of two jets

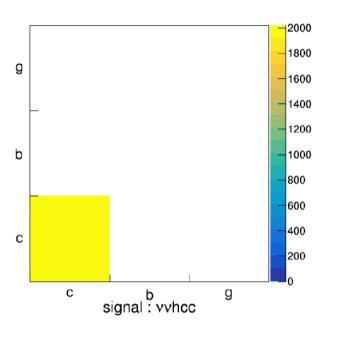
Flavor Tagging Migration Matrix

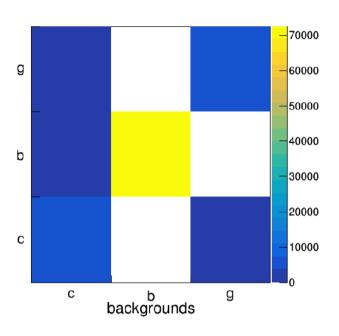
introduce the flavor tagging performance matrix :

eff\to	С	b	udsg
udsg	udsg <mark>to</mark> c	udsg <mark>to</mark> b	udsg <mark>to</mark> udsg
b	b to c	b to b	b <mark>to</mark> udsg
С	c to c	c to b	c <mark>to</mark> udsg

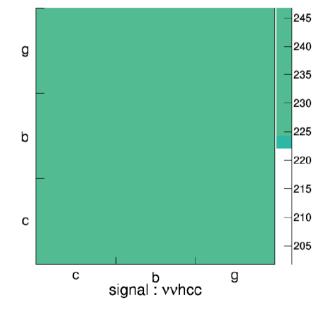
to: identified as

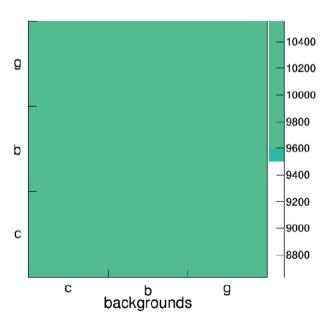
	С	b	udsg
udsg	0	0	1
b	0	1	0
С	1	0	0

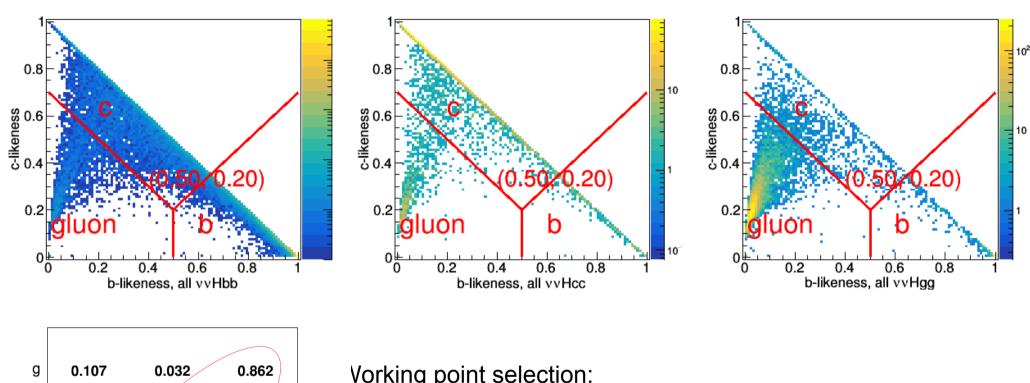

perfect flavor tagging

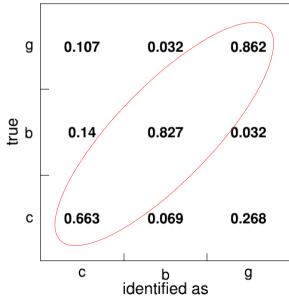

	С	b	udsg
udsg	1 3	1 3	⊣ თ
b	<u>1</u> 3	<u>1</u> 3	<u>1</u> 3
С	1 3	1 3	1 <u> </u> %

non flavor tagging

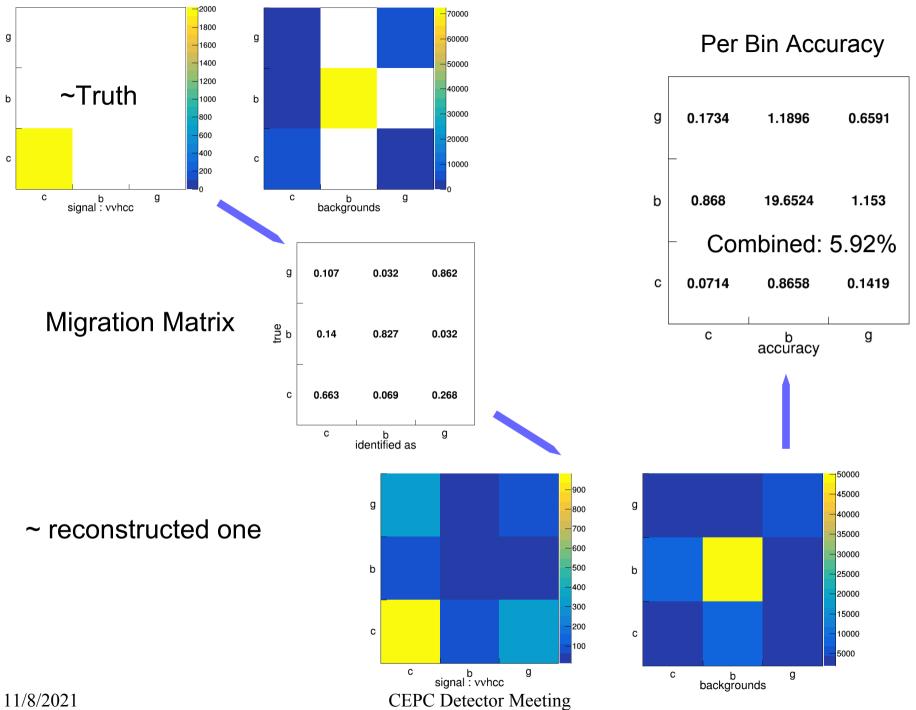

see $\nu\nu Hc\bar{c}$ as signal, and other samples as bkg

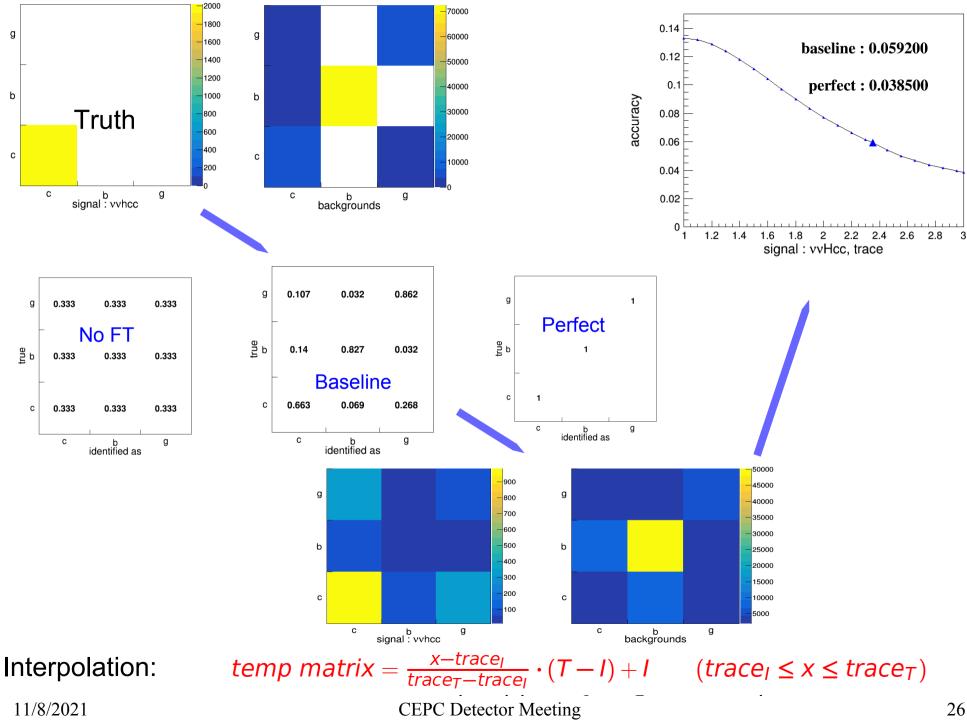

perfect flavor tagging



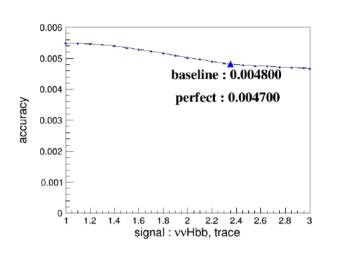

non flavor tagging

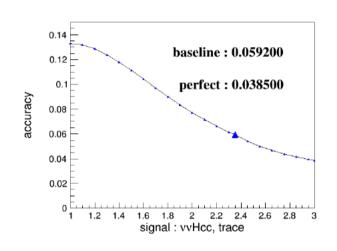
Identify Jet Flavor Using LCFIPlus

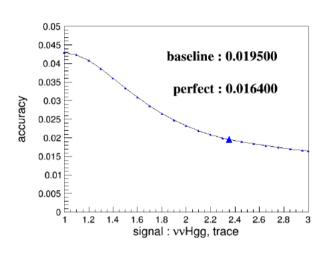




Vorking point selection:

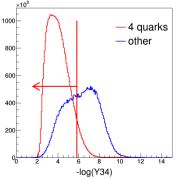

laximize the trace of Migration Matrix (Diagonal terms)

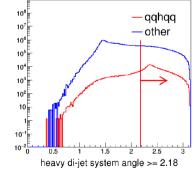

Optimizing Working Point for each decay modes independently ∍ads to percentage level improvement for H→cc/gg

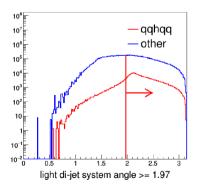


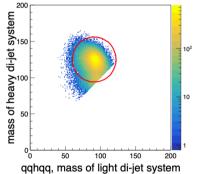
H→bb, cc, gg: dependence between accuracy & FT performance

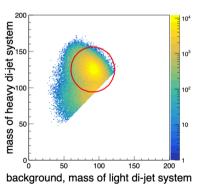
relative accuracy (%)	ννΗb̄b	ννΗϲ̄	ννHgg
cut based flavor tagging	0.48	5.92	1.95
perfect flavor tagging	0.47	3.85	1.64

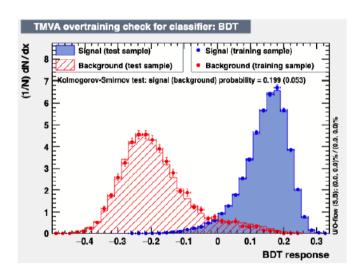

Margin to improve up to ~50%...

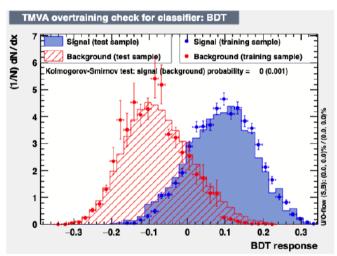

qqH


- Tag H→qq:
- Finding the full hadronic samples from all samples.
- Finding 4-quark samples from the full hadronic samples.
- ③ Finding $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$ from 4-quark samples.
 - Distinguish the H→bb, cc, gg & background events using Flavor Tagging information
 - Using BDT information


Tag qqH, H→qq


	qqHqq	2f	SW	SZ	WW	ZZ	Mixed	ZH	total bkg	$\frac{\sqrt{S+B}}{S}$ (%)
total	527488	8.01 <i>E</i> 8	1.95 <i>E</i> 7	9.07 <i>E</i> 6	5.08 <i>E</i> 7	6.39 E 6	2.18 <i>E</i> 7	613008	9.09 <i>E</i> 8	5.71
multiplicity	527488	3.04 E 8	1.46 <i>E</i> 7	3.37 <i>E</i> 6	4.85 <i>E</i> 7	6.00 E 6	1.81 <i>E</i> 7	577930	3.95 <i>E</i> 8	3.77
LLepEn	527036	2, 98 E 8	6.76 E 6	2.44E6	3.93 <i>E</i> 7	5.40 E 6	1.79 <i>E</i> 7	531411	3.71 <i>E</i> 8	3.65
visEn	510731	1.21 <i>E</i> 8	1.29 <i>E</i> 6	551105	2.14 <i>E</i> 7	3.06 E 6	1.71 <i>E</i> 7	180571	1.65 <i>E</i> 8	2.52
LNeuEn	509623	5.68 <i>E</i> 7	716161	168030	2.04 <i>E</i> 7	2.93 <i>E</i> 6	1.65 <i>E</i> 7	176387	9,77 <i>E</i> 7	1.94
thrust	460535	7.81 <i>E</i> 6	473732	132126	1.88 <i>E</i> 7	2.60 E 6	1.54 <i>E</i> 7	167863	4.54 <i>E</i> 7	1.47
$-log(Y_{34})$	451468	4.90E6	181432	119836	1.74 <i>E</i> 7	2.40E6	1.45 <i>E</i> 7	165961	3.97 <i>E</i> 7	1.48
HJetA	326207	2.83 E 6	110156	58613	4.54 E 6	870276	3.74 <i>E</i> 6	96560.3	1.22 <i>E</i> 7	1.08
ZJetA	279030	1.37 <i>E</i> 6	33491	37101	2.39 <i>E</i> 6	496611	2.00 <i>E</i> 6	74005	6.41 <i>E</i> 6	0.93
ZHA	274530	1.32 <i>E</i> 6	17026	33847	2.28 <i>E</i> 6	468340	1.91 <i>E</i> 6	69620	6.10 <i>E</i> 6	0.92
circleqq	268271	1.20E6	10193	31567	2.13 <i>E</i> 6	424514	1.79E6	65434	5.65 <i>E</i> 6	0.907




Relative Accuracy on qqH, H→qq: 0.9%

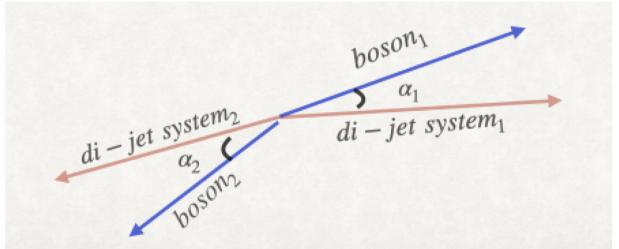

Finally, finding $qqH(H \rightarrow b\bar{b}, c\bar{c}, gg)$ from $ZH(Z \rightarrow q\bar{q}, H \rightarrow q\bar{q})$ with BDT.

- number of final state particles
- visible energy of final state particles
- leading lepton energy, leading neutral energy
- thrust, Y34
- heavy di-jet angle, light di-jet angle

- the invariant mass of light di-jet system
- the invariant mass of heavy di-jet system
- the b/c-likeness of four jets
- four momentum of four jets

\sim		h	h	h
		11	I)	
_	ч		\sim	\sim

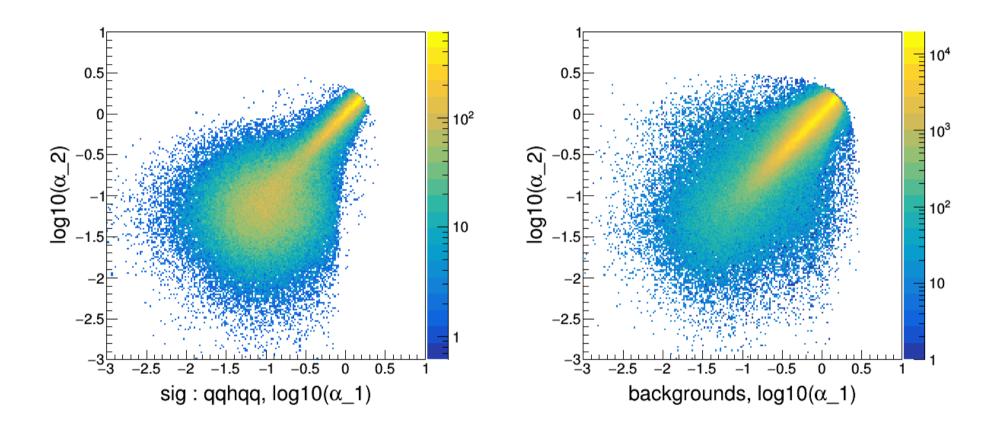
qqhcc


qqhgg

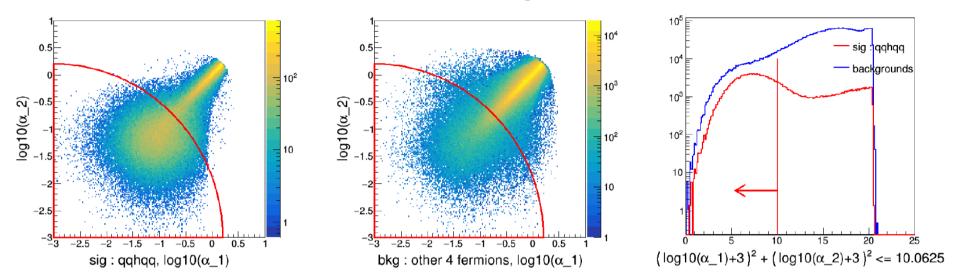
	signal	2f	SW	SZ	WW	ZZ	Mixed	ZH	total bkg	$\frac{\sqrt{S+B}}{S}$ (%)
qqhbb	174201	89168.9	0	67	3596	54373	4094	11264	162566	0.33
qqhcc	5084	76291	10	165	38838	21343	61524	15895	214068	9.2
qqhgg	19564	181982	0	0	140735	50184	134015	41995	548920	3.85

Optimization: CSI & Flavor Tagging

color singlet identification


For di-boson event, there are two MC truth bosons and two di-jet systems, the variable $\alpha_i = angle(di - jet system_i, truth boson_i)$, (i = 1, 2) is used to characterize the performance of jet clustering and jet matching.

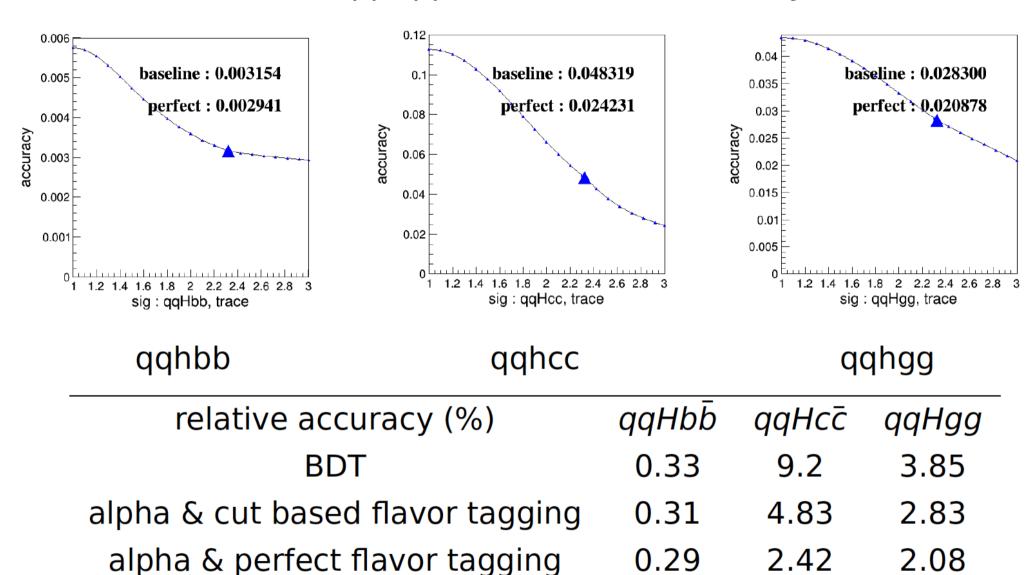
the α variable is just a cheated variable used to characterize the performance of color singlet identification


Diagnosis method developed in EPJC...

Distribution of alphas: Signal & Background

Observation: backgrounds tends to have large alphas – large jet confusion, induced by the Kinematics requirement in event selection

If we know the CSI performance...


the red curve : $(log10(\alpha_1)+3)^2+(log10(\alpha_2)+3)^2 <= 3.2^2$ used to select events with good color singlet identification

	qqhbb	qqhcc	qqhgg	background
after circle	219360	10430.5	31469.7	5.65E6
after alpha	132697	6776.48	17570	593172

 α detail: https:

//link.springer.com/article/10.1140/epjc/s10052-019-6719-2

the variation of $qqHq\bar{q}$ measurement accuracy with trace

Summary

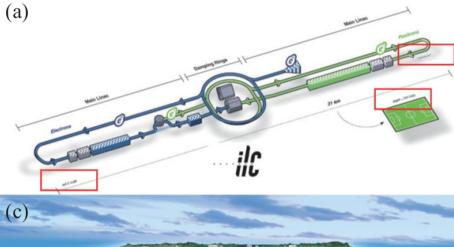
- CEPC Higgs White paper published in 2019: quantifies the core physics potential
- Performance: quantify requirements & baseline performance
- 360 GeV Higgs operation (2 ab⁻¹)
 - Provides 30% more Higgs, improve the Higgs width measurement by ~ 2 times
 - Significant impact on top, etc
- H→qq analyses
 - Accuracies at Baseline: 0.26/4.3/1.6% for H→bb/cc/gg
 - Optimization study
 - CSI: essential: quantify its performance already boost the accuracy on H→cc by 2 times.
 - Flavor Tagging: up to 50%/2 times (H→cc @ vvH/qqH)
 - Plan:
 - Develop better CSI, from quantify the CSI with reconstructable information.
 - Promote better Flavor tagging

Back up

Electron Positron Higgs factories

High-priority future initiatives

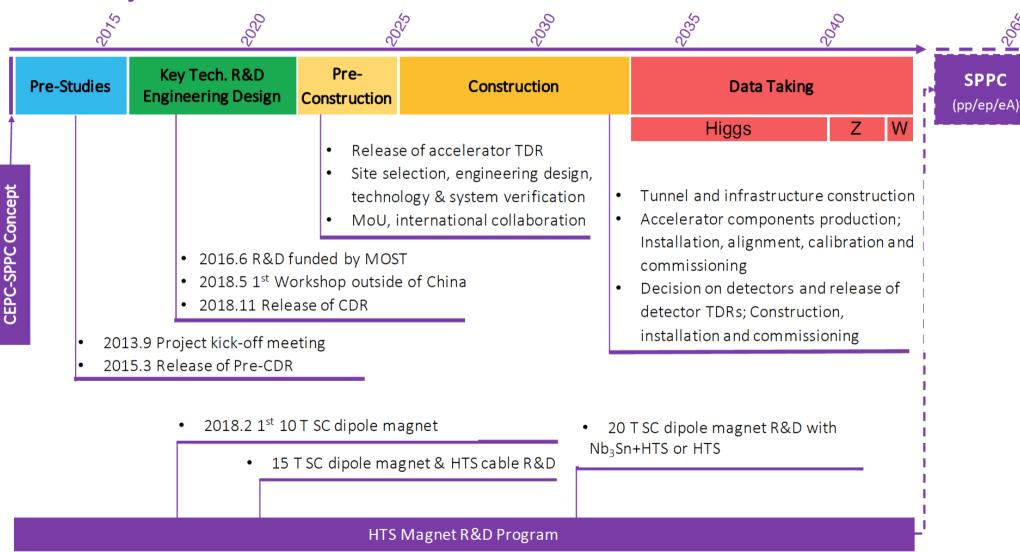
An electron-positron Higgs factory is the highest-priority next collider. For the longer term, the European particle physics community has the ambition to operate a proton-proton collider at the highest achievable energy. Accomplishing these compelling goals will require innovation and cutting-edge technology:

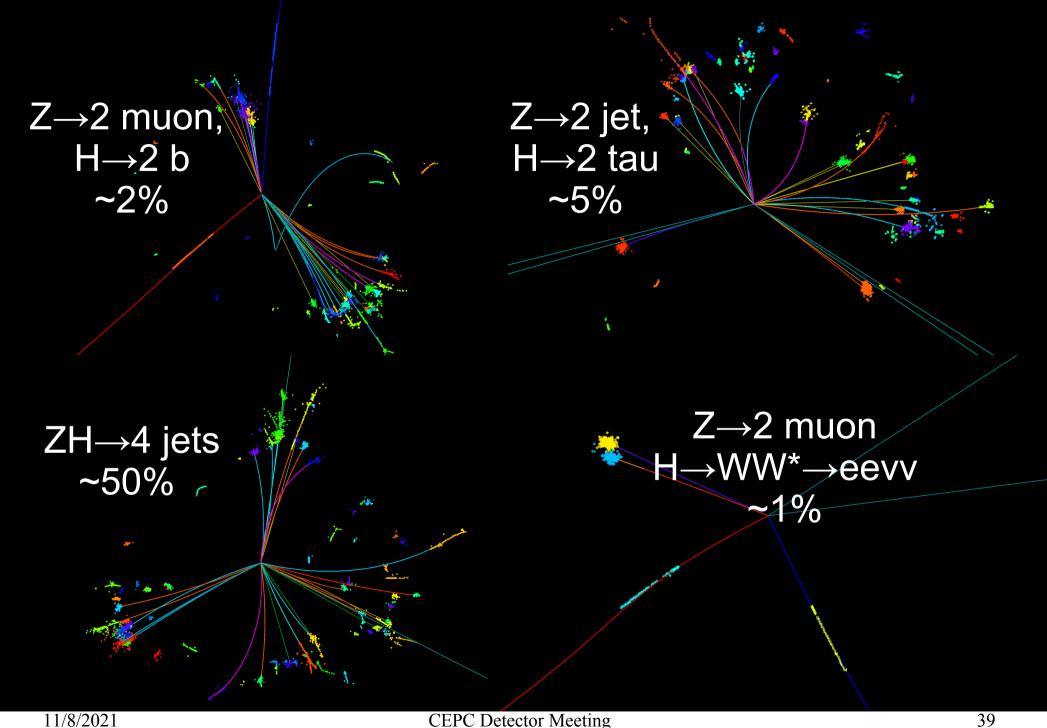

ILC (a): TDR @ 2013

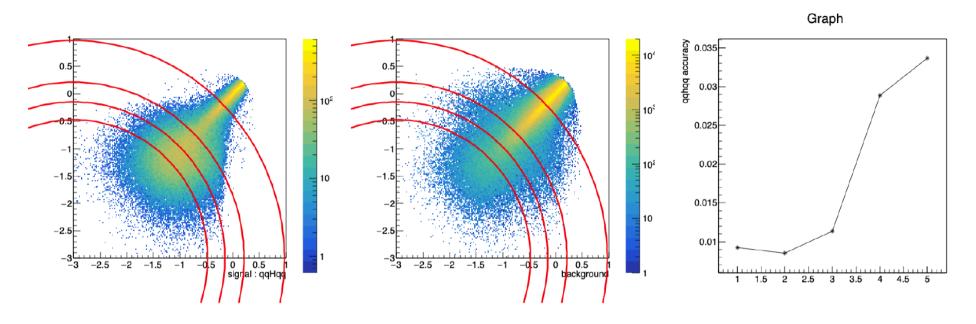
FCC (b): CDR @ 2019

CEPC (c): CDR @ 2018

CLIC (d): CDR @ 2013






Timeline

CEPC Project Timeline

If we know the alphas...

Four red curve correspond to $log10(\alpha_1) = 2.525$, 2.85, 3.21 and 3.97, respectively.

	bin_1	bin_2	bin ₃	bin_4	bin_5
qqhqq	51245	52607	51244	51013	50954
bkg	171825	148041	287875	2.13E6	2.89E6
accuracy	0.92%	0.85%	1.14%	2.89%	3.37%

1/5 the data leads to the same accuracy on qqH, H->qq in total

Combination

Cι	ır	rΔ	n	+
しし	11	ᆫ	П	L

Z decay mode	H → b̄b	H → c̄c	H → gg
$Z \rightarrow e^+e^-$	1.6%	14.7%	10.5%
$Z \rightarrow \mu^+\mu^-$	1.1%	10.5%	5.4%
$Z \rightarrow q\bar{q}$	0.33%	9.20%	3.85%
$Z \rightarrow \nu \bar{\nu}$	0.47%	5.95%	1.92%
combination	0.26%	4.31%	1.61%

White paper

vviiito papoi						
Z decay mode	$H \rightarrow b\bar{b}$	$H \rightarrow c\bar{c}$	$H \rightarrow gg$			
$Z \rightarrow e^+e^-$	1.3%	12.8%	6.8%			
$Z \rightarrow \mu^+ \mu^-$	1.0%	9.4%	4.9%			
$Z \to q \bar{q}$	0.5%	10.6%	3.5%			
$Z \rightarrow \nu \bar{\nu}$	0.4%	3.7%	1.4%			
combination	0.3%	3.1%	1.2%			

• Current,