AGB stars and the s-process

A/Prof Amanda Karakas School of Physics & Astronomy, Monash University, Australia **ARC Centre of Excellence for All Sky Astrophysics in 3D**

Outline of Lectures

My two lectures cover the following topics:

- 1. The evolution and nucleosynthesis of AGB stars
- 2. The slow neutron capture process

INTRODUCTION

Introduction

- 13.7 billion years ago, the big bang made (mostly) hydrogen (~76%) and helium (24%)
- Everything else, including the material that makes up you and me, was cooked inside a giant stellar furnace
- What stars produce what elements?
- Our Sun is a star! How will it age? What elements will it make?

Low and intermediate-mass stars

Stars between about 0.8 to 8Msun, depending on metallicity

From Karakas & Lattanzio (2014)

Some definitions

• Low-mass stars:

- Initial masses from 0.8 to 2.2 solar masses (maximum mass for core He-flash)
- Intermediate-mass stars:
 - Initial masses from 2.2 to 7 Msun (maximum mass for making a CO white dwarf)
- Super-AGB and electron-capture supernovae:
 - Initial masses between 8-12Msun
- Massive stars:
 - − Initial masses: \gtrsim 12 Msun

These definitions are for a solar composition, Z = 0.014 (solar)

Periodic Table

Group	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Period																		
1	${}^{1}_{\mathrm{H}}$																	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 O	9 F	10 Ne
3	11 Na	${}^{12}_{Mg}$											13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
5	37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
6	55 Cs	56 Ba	71 Lu	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 Tl	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	103 Lr	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Uun	111 Uuu	112 Uub	113 Uut	114 Uuq	115 Uup	116 Uuh	117 Uus	118 Uuo
*Lantha	ano	ids	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb		
**Acti	noie	ls	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No		

Am

Very low mass stars (≤ 0.8 Msun, depending on Z) are still on the main sequence fusing hydrogen in their cores

 \rightarrow These stars have not contributed to the chemical evolution of our Galaxy

The most important are:

- Massive stars that explode as Type II (core collapse) supernova (≥ 10 solar masses);
- Stars that evolve through the first and asymptotic giant branches (≤ 8 solar masses)
- 3. Explosive events involving binary evolution also important (e.g., Type Ia, merging neutron stars, novae).

Nucleosynthesis

- Production of atomic nuclei in the Universe
- Nucleosynthesis^{*} takes place deep inside stars
- How does it get out?

We need a way of moving the material from the stellar core, where thermonuclear reactions take place, to the surface.

From there, we then need a way of moving the processed material into the ISM:

- 1. Low and intermediate-mass stars: no explosion! Mixing + mass loss returns the material.
- 2. Single massive stars: mass loss + core-collapse supernova explosions.
- 3. Explosive binary phenomena: including merging neutron stars, Type Ia supernovae, novae.

Star birth masses

 For every massive star, there are 1000 intermediate mass stars and 10,000 low mass stars.

- About 60% of all stars are born in binary star systems.
 - A small fraction are born in triple and even quadruple systems.

Initial Makeup of Stars

From Frank Timmes website

Birth statistics

How long do stars live?

Age of the galaxy \approx 12 x 10 ⁹ years; Universe \approx 13.7 x 10 ⁹ years						
Initial mass (M _{sun})	Main sequence lifetime	Total stellar lifetime				
25	6.7 Myr	7.5 Myr				
15	11Myr	13 Myr				
5	80 Myr	100 Myr				
2	900 Myr	1.2 Gyr				
1	10 Gyr	12 Gyr				
0.8	20 Gyr	> 32 Gyr				

1 Myr = 1,000,00 years; 1 Gyr = 1000 Myr Ages from Karakas & Lattanzio (2007); Woolsley et al. (2002)

A note on abundances

• Theoretically, we use the concept of mass fraction:

Sum of mass of H + He + 'metals' = 1

• Where you have seen **X** = hydrogen, **Y** = helium and **Z** = are the metals, or everything else, the global metallicity.

Example:

- In the Sun: X = 0.7154, Y = 0.2703, Z = 0.0142 (Asplund et al. 2009)
- Most of Z is in the form of CNO nuclei, that is $Z_{CNO} \approx 0.65 Z$, where 42% of Z is in the form of oxygen.

Example, the primordial ⁴He abundance is around Y \approx 0.245 by mass.

• The abundance by number is 0.245/4.0 = 0.061.

A note on abundances

• Observed stellar abundances are commonly presented in the following:

$$A(x) = \log_{10} \frac{N(x)}{N(H)} + 12$$

• This is common spectroscopic notation. The definition of

 $[x/y] = \log_{10} (N(x)/N(y))_{star} - \log_{10} (N(x)/N(y))_{sun}$

- Where N(x) = abundance (by number) of species "x" and N(y) is the abundance of species "y", e.g., [Fe/H] which is the main proxy for Z.
- Converting between abundances and models is important.
- Roughly, [Fe/H] ~ $\log\left(\frac{Z_{star}}{Z_{sun}}\right)$

Stellar abundances

- The gray points are solar neighbourhood dwarf stars and the coloured are microlensed dwarf stars in the Milky Way bulge.
- Stars with [Fe/H] < 0 are metal-poor; e.g., [Fe/H] = -1 have $Z \sim 10^{-1} Z_{\odot}$.
- Stars with [Mg/Fe] > 0 are considered alpha-enhanced.

There are a number of good textbooks on the subject including

- 1. Clayton, D. D., "Principles of stellar evolution and nucleosynthesis", 1984
- 2. Arnett, D., "Supernovae and Nucleosynthesis", 1996
- 3. Iliadis, C., "Nuclear Physics of Stars", 2015 (2nd Ed)
- 4. Pagel, B., "Nucleosynthesis and Chemical Evolution of Galaxies", 2009
- 5. Ryan, S. & Norton, A. J., "Stellar Evolution and Nucleosynthesis", 2010 good undergrad textbook

BASIC STELLAR EVOLUTION

Reference

To put together these lectures, I used a lot of material published in my review paper:

 Karakas, A. & Lattanzio, J. C., "Nucleosynthesis and stellar yields of low and intermediate-mass stars", 2014, Publications of the Astronomical Society of Australia (PASA), 30, e30 and the many references therein

How do stars produce energy?

- Once the temperature of a proto-star reaches about 10 million degrees Kelvin, nuclear fusion begins!
- Hydrogen fusion *or burning* (i.e., similar to a H-bomb)
- 4 protons \rightarrow ⁴He + 2 e⁺ + 2 neutrinos + energy
- Where does the energy come from?
- From E = mc^2 : the mass of 4 protons > 1 ⁴He nuclei

- How much energy?
- Energy released = 26 MeV
 - = 4 x 10⁻¹² Joules

But the Sun does this 10³⁸ times a second!

An overview of stellar evolution

The x-axis: logarithm of the surface temperature of the star (in Kelvin) The y-axis: logarithm of the brightness (amount of energy a star radiates per unit time)

Core He burning

H-burning: Proton proton chains

Main result: 4 p \rightarrow ⁴He + energy + stuff

From MPA, Neutrino Astrophysics Group

H burning: CNO cycles

The full CNO cycles:

13N half life = 9.965 min 15O half life = 122.24 s 17F half life = 64.49 s 18F Half life = 109.77min

C+N+O remains constant Re-arranges C, N, O nuclei into ¹⁴N

H-burning: CNO equilibrium ratios

Ratios	Surface of Sun	CNO equilibrium
¹² C: ¹⁴ N: ¹⁶ O	3:1:9	1:120:10
¹² C/ ¹³ C	90	~3

- The CNO ratios at stellar surface and from the CNO cycle equilibriums are very different.
- ¹³C and ¹⁴N increase, while ¹⁶O barely changes.
- Low ¹²C/¹³C ratios (< 30) at the surface of a star an indication that material was exposed to CN cycling.

Advanced H-burning cycles

The reactions of the Ne-Ne chain (left) and Mg-Al chain (right):

Requires hotter temperatures, T \gtrsim 30 x 10⁶ K (Arnould et al. 1999)

Post-main sequence structure

At the end of the H-burning phase:

- Inert He core, that is contracting and heating
- Shell of H-burning around the core.
- An envelope that is *expanding*.

Expansion causes mixing

Mixing occurs when the base of the convective envelope deepens, and reaches inner regions of the star that have experienced nucleosynthesis.

First and second dredge up:

mix material that was partially processed on the main sequence: H-burning.

First dredge-up

- As the star becomes a giant the outer layers expand and cool.
- At the surface the material is less ionised and there are more ways for photons to interact with matter → opacity increases.
- Convection grows deeper into the star.
- This has the effect of the convective envelope moving deeper inwards (in mass!).
- The convective envelope may reach a part of the star that experienced partial or complete H-burning during the previous main sequence.
- Mixes burned material to the surface \rightarrow dredge-up!

First dredge-up: what we see

- Isotopic ratios in stellar physics are usually by number unless otherwise stated.
- To convert from mass fraction, divide by atomic mass:

$$Y_k = \frac{X_k}{A_k}$$

 Here X_k = mass fraction of species k and A_k = atomic mass of species k

Example: Convert to mass fraction: [12 x Y(12 C)] /[13 x Y(13 C)] = X(12 C)/X(13 C) E.g., for the initial ratio = 87 x (12/13) = 80

What do we see at the surface?

From Karakas & Lattanzio (2014)

Summary: First dredge up

- Mixes material to the surface that was partially processed by H-burning during the previous main sequence.
- Main changes at the surface:
 - Reduction in Li, ¹²C/¹³C ratio
 - Increases in ³He, N
 - Little change to ¹⁶O but ¹⁷O increases while ¹⁸O decreases
 - Hence, ¹⁶O/¹⁷O decreases while ¹⁶O/¹⁸O increases

Example: 1.25Msun, Z = 0.02 model

We are seeing the results of the pp chains and CNO cycle mixed to the stellar surface!

Depth of first and second dredge-up

From my thesis but also see Boothroyd & Sackmann (1999); Karakas & Lattanzio (2014)

Frist dredge-up and stellar yields

- The first dredge-up changes the surface composition but the effect on the stellar yields of most masses is small compared to the AGB phase
- By stellar yield: mass lost through stellar winds, integrated over the whole stellar lifetime
- The yield will include mass lost during the RGB and the AGB (and all phases inbetween)
- This is because the AGB phase results is strong changes to the surface composition
- Except stars that do not experience mixing on the AGB, usually M \lesssim 1.2 Msun, depending on Z.

Comparison to observations

Observations of low-mass giants in the field or in clusters show that the ¹²C/¹³C ratio is less than 20 (e.g., Gilroy 1989)

Extra mixing in low-mass giant stars

- M < 2Msun
- The result is to mix products of the CN cycle to the surface.
- This results in further reductions in ¹²C/¹³C and C/N.
- Lithium also be destroyed (maybe).
- The mechanism?
- We still don't know.
- Rotation? Unlikely to be main driver (Palacios et al. 2006)
- Thermohaline mixing favoured in recent years.

From Charbonnel & Zahn (2007)

References: Smith & Tout (1992), Boothroyd & Sackmann (1999), Nollett et al. (2003), Stancliffe et al. (2009), Angelou et al. (2012), Lattanzio et al. (2015), Henkel et al. (2017)

Effect on the overall stellar yields

Extra mixing only affects a few isotopes:

- 1. 3 He big reduction in the yield
- 2. ⁷Li reduction or production? Not clear
- 3. ¹²C, ¹³C (C elemental abundance) C abundance down, ¹³C isotopic abundance up
- ¹⁴N, ¹⁵N (N elemental abundance) N abundance up, in particular ¹⁴N but ¹⁵N down
- 5. Oxygen isotopes? Not clear extra mixing is important.

References: Discuss both thermohaline mixing and rotation Charbonnel & Lagarde (2010), Lagarde et al. (2011, 2012a,b – note that rotation can change the internal structure and the surface changes after FDU for a few elements e.g., N)
Helium Ignition

Requires T = 100 million K

For stars of mass > 2 M_{\odot} He ignition in the core happens smoothly

For stars of mass < $2 M_{\odot}$ He ignition happens suddenly (*flash*) because the core is degenerate

Core He Burning

- Helium burns into ¹²C via triple alpha:
- But ⁴He can also fuse with ¹²C:
- So He decreases and C increases..
- ...until C decreases and O increases...
- Final C/O depends on the rate of the ${}^{12}C$ + α reaction.

 $3 {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$

 $^{12}C + ^{4}He \rightarrow ^{16}O + \gamma$

Helium burning

- At slightly higher T and density the ¹²C(α, γ)¹⁶O reaction occurs once a supply of ¹²C is available
- The ${}^{12}C(\alpha, \gamma){}^{16}O$ reaction also supplies energy
- At the end of core He-burning, the composition of the core is roughly 50% ¹²C and 50% ¹⁶O
- Although the final C/O greatly depending on the rates and can be as extreme as C:O = 0.10:0.90.
- Temperature dependence for the triple- α rate turns out to be roughly $\epsilon \propto T^{40}$!
- This means that helium burning leads to a very steep temperature gradient
 → convection

EVOLUTION AND NUCLEOSYNTHESIS OF AGB STARS

The early asymptotic giant branch

- Following core He-exhaustion, the star evolves up the second giant branch, or AGB.
- A helium burning shell is established around the contracting C-O core, which narrows as the star evolves.
- Eventually the shell becomes thin and partially degenerate.
- Helium burning is unstable under such conditions → leads to thermal pulses or He-shell instabilities.
- However, the early part of the AGB is the longest in time and is where the second mixing event occurs.

Where mixing takes place

Second dredge up

 Convection reaches deeper during the ascent of the AGB compared to the RGB for intermediate-mass stars over ~4.5 Msun (for solar metallicity)

1Msun, Z = 0.014

5Msun, Z = 0.014

Adding in second dredge-up

¹⁴N/¹⁵N is mostly affected by SDU, along with helium, which can increase by up to $\Delta Y \sim 0.1$

From Karakas & Lattanzio (2014)

Asymptotic Giant Branch stars

Asymptotic Giant Branch stars: (solar metallicity upper limit: 8M_{sun})

- After core He-burning, the C-O core contracts and the star becomes a giant again.
- He-burning shell is thermally unstable \rightarrow causes mixing.
- Rapid, episodic mass loss erodes the envelope.

References:

Textbook by Habing & Olofsson (2003)

Reviews by Karakas & Lattanzio (2014), Herwig (2005), Busso et al. (1999), Iben (1991) etc.

Artist impression.

Courtesy of Pedro Garcia-Lario, ESA and Anibal García-Hernandez, IAC

Where mixing takes place

Products of nucleosynthesis

Low and intermediate-mass stars go through central hydrogen and helium burning

During the AGB, they have shells burning H and He

- 1. First dredge-up: Products of (partial) H burning
- 2. Second dredge-up: Products of H burning
- **3.** Third dredge-up: Products of H, He-burning and neutron-capture nucleosynthesis
- 4. Hot bottom burning: Products of H-burning
- 5. Extra mixing processes: Products of H-burning

 \rightarrow We we will now discuss the AGB phase of evolution

AGB nucleosynthesis

He-shell instabilities

- The He-shell thins as the star ascends the AGB and becomes thermally unstable.
- He-burning in a thin shell leads to a thermal runaway, similar to the core He-flash. Why?
- Not caused by electron degeneracy, although the shell is partially degenerate.
- Caused by the shell being thin.
- Contracting shell \rightarrow hotter $\rightarrow \epsilon \propto T^{40} \rightarrow$ but shell can't expand enough to cool \rightarrow thermal runaway.
- Luminosities can reach > 10^8 solar luminosities.

He-shell burning in AGB stars

- Up to $\sim 10^8$ Lsun can be generated by a thermal pulse
- Energy goes into expanding the star
- He-shell becomes unstable to convection \rightarrow mixes products of He-burning throughout shell

2Msun, Z = 0.014 model star:

The thermal pulse cycle

Interpulse phase

The AGB Evolution Cycle

- On phase: He-shell burns brightly, producing up to 10⁸ L_{sun}, drives a convection zone in the He-rich intershell and lasts for ~ 100 years
- 2. Power-down: He-shell dies down, energy released by flash drives expansion which extinguishes the H-shell
- 3. Third dredge-up: convective envelope moves inward into regions mixed by flash-driven convection. Mixes partially He-burnt material to surface.
- Interpulse: star contracts and H-shell is re-ignited, provides most of the surface luminosity for the next ~10⁵ years

Pulse (He-burning) \rightarrow TDU (mixing) \rightarrow Interpulse Few ~10² yrs \rightarrow ~10² years \rightarrow ~10⁵ yrs

Third dredge-up

- Badly named, can re-occur after each thermal pulse
- Inward movement of convective envelope, reaches into the He-shell
- Right-hand panel shows the evolution of the core in a low-mass AGB model
- Six (third)-dredge-up events are visible. Each one will mix He-shell material to the surface

Typical Galactic C-rich AGB star: 1.8Msun, Z = 0.01

Non-energetic reactions

- He-burning occurs in the *ashes* of H-burning
- The composition is typically 98% ⁴He, \sim 2% ¹⁴N
- Remember that the CNO cycle produces mostly ¹⁴N, which can capture alpha particles to produce secondary nuclei, depending on T:
 - 14 N(α, γ)¹⁸F(β⁺ν)¹⁸O(α, γ)²²Ne
 - ²²Ne + $\alpha \rightarrow$ ^{25,26}Mg (+n or γ) when T > 300 million K
- These reactions produce little energy but are important for nucleosynthesis
- Example, the ²²Ne(α,n)²⁵Mg (Q = -0.478MeV) reaction releases *free* neutrons that can be used to produce heavy elements i.e., ⁵⁶Fe(n,γ)⁵⁷Fe(n,γ)...

Products of He-shell nucleosynthesis

3Msun, Z = 0.014:

Surface abundance of carbon (left) and fluorine (right) during the AGB

 \rightarrow We can make a carbon-rich star, which has C/O > 1

AGB stars can become carbon rich

From Karakas (2014) for [Fe/H] = -0.3, 0.0, +0.3

Hot bottom burning

Occurs in stars over about 4.5Msun for Z = 0.014

Along with thermal pulses and the third dredge-up, these stars also have:

- Second dredge-up: Biggest ΔY (up to 0.1)
- Hot bottom burning: Proton-capture nucleosynthesis at base of envelope (products: N, Na, AI)

Hot bottom burning and third dredge up

Example: 6Msun, Z = 0.02

Third dredge-up (TDU) and HBB act together

CN cycle is acting close to equilibrium for ~20 thermal pulses

Lithium production

- The first thing to happen is that ⁷Li is produced via the Cameron-Fowler Beryllium Transport Mechanism
- This is basically pp chains plus convection!
- The idea is that lithium is made by ${}^{3}\text{He}(\alpha, \gamma){}^{7}\text{Be}$
- and then to use convection to move the ⁷Be away from the hot region before it can complete the ppII or ppIII chains:

³He (
$$\alpha, \gamma$$
)⁷Be (β, γ)⁷Li
³He (α, γ)⁷Be (β, γ)⁷Li
⁵Be (p, γ)⁸B ($\beta^* \vee$) Be(α)⁴He = PPIII
BAD!
BAD!

Cameron-Fowler mechanism

Lithium production

Lithium is produced by the Cameron-Fowler mechanism: ⁷Be is transported by convection, where it captures an electron to produce ⁷Li

- Most mass is lost here
- Overall no net
 production of Li

Summary: Composition of AGB stars

- C/O > 1: 1.5 to $4.5M_{sun}$ for [Fe/H] ~ 0 \rightarrow C stars, Ba, CH
 - Third dredge-up: He-shell burning (e.g., ¹²C, F, ²²Ne etc)
- C/O < 1: M < 1.5Msun and M > 4.5M_{sun} for [Fe/H] ~ 0
 - M > 4.5Msun: H-burning in convective envelope (e.g., Li, ^{13}C , ^{14}N , Na, ^{26}AI)
 - M < 1.5Msun: First dredge-up ONLY

Super-AGB stars: 8-10 Msun stars

- The first models of stars in the range 8 to 10Msun were by Nomoto (1984), Garcia-Berro & Iben (1994), Ritossa et al. (1996), and Gutierrez et al. (1996).
- The paper by Garcia-Berro & Iben (1994) gave the name "super-AGB" for stars that ignite carbon and then experience thermal pulses.
- These calculations are difficult, and no one really worked on them for a long time after, until Gil-Pons et al. (2001, 2002) and then Siess (2006)
- Now, many studies of theses difficult objects!

Off-centre carbon ignition

- Stars between ~8 to 10Msun go through degenerate carbon ignition
- Before ascending the thermally-pulsing AGB with O-Ne cores
- Q: What fraction explode as supernovae or leave massive white dwarfs?
- E.g., Poelarends et al. (2008), Gil-Pons et al. (2013), Jones et al. (2014)
- The brightest AGB stars in young populations, with Mbol ~ -7.6, brighter than the traditional AGB limit (Mbol ~ -7.1)

7.5Msun, Z= 10⁻⁴ model by Siess (2007)

Final fate of Super-AGB stars?

The final fate of super-AGB stars is uncertain

- Will they mostly produce massive ONe white dwarfs
- What fraction will explode as electron capture supernova?
- What are their nucleosynthesis products? H burning? He-shell burning? The rapid neutron capture process?
- What happens when they are in a binary system?
 Will more explode?
- How do they affect the enrichment of the galaxy?

Lots of questions! Very exciting stuff See Doherty et al. (2017) for a review!

From Doherty et al. (2015)

AGB stars and the s-process

A/Prof Amanda Karakas School of Physics & Astronomy, Monash University, Australia **ARC Centre of Excellence for All Sky Astrophysics in 3D**

THE S-PROCESS

Outline of Lecture 2

We will look at:

- 1. Introduction to the s-process
- 2. Sites of s-process production
- 3. Puzzles and the i-process
- 4. Chemical evolution of heavy elements

Production of heavy elements

- By heavy elements we mean heavier than iron (Fe)
- Z is large → the electrostatic repulsion inhibits fusion reactions
- Most heavy nuclei are formed by neutron addition onto Fe-peak elements
- Two processes:
 - *r*-process (rapid neutron capture)
 - s-process (slow neutron capture)

References:

Lattimer & Schramm (1974), Meyer (1994), Sneden, Cowan & Gallino (2008), Käppeler et al. (2011)

The origin of the elements

From Kobayashi, Karakas & Lugaro (2020)

Credit: Chiaki Kobayashi/Sahm Keily

Solar System abundances: nucleosynthesis

Example of neutron capture

• Neutron captures start with Fe:

```
{}^{56}\text{Fe} + n \rightarrow {}^{57}\text{Fe} + n \rightarrow {}^{58}\text{Fe} + n \rightarrow {}^{59}\text{Fe}
```

• What happens next? ⁵⁹Fe is unstable. It can do one of two things:

The slow and rapid processes

Neutron number

Branching points

https://people.physics.anu.edu.au/~ecs103/chart/

⁹³Zr is marked as stable It is not. It does have a long half-life (1.6 million years) so is stable for the purposes of the s-process.

Magic Numbers

- Quantum mechanics teaches us about the stability of closed electron shells.
- Similar things happen in the nucleus.
- When a complete energy level is filled it is particularly stable:

it has a low σ for reactions!

- This happens at 2, 8, 20, 28, 50, 82 and 126.
- These Magic Numbers apply to n or p.
- If it applies to n and p the nucleus is said to be "doubly magic".
- Examples: ${}^{16}_{8}O$, ${}^{56}_{28}Ni$, ${}^{208}_{82}Pb$ are all doubly magic nuclei.

The nuclear physics of the Solar System abundances

Neutron-capture cross sections

- Here $\sigma = cross$ section
- Probability of capturing a neutron
- Measured in milli-barn (mb), here the barn = 10⁻²⁸ m².
- Typical neutron-capture cross sections are measured in millibarn (mb) but may be ~1000 mb (1 b).

Fig. 6.2. Neutron-capture cross-sections at energies near 25 keV. Very large dips occur at the magic numbers. After Clayton (1984). Copyright by the University of Chicago. Courtesy Don Clayton.

Neutron-capture cross sections

Name	Z, Proton number	A, atomic mass	A, atomic mass σ (mb)	
¹⁶ O	8	16	0.038 ± 0.004	99.757 %
⁵⁶ Fe	26	56	11.7 ± 0.5	91.754 %
¹³⁵ Ba	56	135	455 ± 15	6.592 %
¹³⁸ Ba	56	138	4.0 ± 0.2	71.698 %
¹³⁸ Ce	58	138	179 ± 5	0.250 %
¹⁴⁰ Ce	58	140	11 ± 0.4	88.450 %
²⁰⁸ Pb	82	208	0.36 ± 0.03	52.4 %

- Cross sections are Maxwellian averaged cross sections at 30 keV (~350 million K)
- From Kadonis Database: <u>http://exp-astro.physik.uni-frankfurt.de/kadonis/index.php</u>
- Percentages from: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

Note: T (kelvin) ~ $1.16 \times 10^7 \text{ T (keV)}$

Neutron-capture cross sections

Name	Z, Proton number	A, atomic mass	, atomic mass σ (mb)	
¹⁶ O	8	16	0.038 ± 0.004	99.757 %
⁵⁶ Fe	26	56	11.7 ± 0.5	91.754 %
¹³⁵ Ba	56	135	455 ± 15	6.592 %
¹³⁸ Ba	56	138	4.0 ± 0.2	71.698 %
¹³⁸ Ce	58	138	179 ± 5	0.250 %
¹⁴⁰ Ce	58	140	11 ± 0.4	88.450 %
²⁰⁸ Pb	82	208	0.36 ± 0.03	52.4 %

- Cross sections are Maxwellian averaged cross sections at 30 keV (~350 million K)
- From Kadonis Database: <u>http://exp-astro.physik.uni-frankfurt.de/kadonis/index.php</u>
- Percentages from: https://www-nds.iaea.org/relnsd/vcharthtml/VChartHTML.html

Note: T (kelvin) ~ $1.16 \times 10^7 \text{ T (keV)}$

The Solar System abundances

The *s*-process peaks correspond to **stable nuclei** with neutron magic numbers N = 50, 82, 126because the neutron capture path goes rights through them.

The Solar System abundances

The s-process peaks correspond to stable nuclei with neutron magic numbers *N* = 50, 82, 126 because the neutron capture path goes rights through them. The *r*-process peaks correspond to unstable nuclei with

neutron magic numbers

Anything strange here?

^β KN β+	β+ β+	β+ β+	β+ β+	β+ β+	e- capture	e- capture	β+	Stable	β-	β-	β-	
⁹⁴ Ru	⁹⁵ Ru	⁹⁶ Ru	⁹⁷ Ru	⁹⁸ Ru	⁹⁹ Ru	¹⁰⁰ Ru	¹⁰¹ Ru	¹⁰² Ru	¹⁰³ Ru	¹⁰⁴ Ru	¹⁰⁵ Ru	1
⁹³ Τс _{β+}	⁹⁴ Тс	⁹⁵ Τс	⁹⁶ Τс	97 TC e- capture	⁹⁸ Τс	⁹⁹ Τс	¹⁰⁰ Τc	¹⁰¹ Τc	¹⁰² Τc	¹⁰³ Τc	¹⁰⁴ Тс	1
92 Mo Stable	93 Mo e- capture	94 Mo Stable	95 Mo Stable	96 Mo Stable	97 Mo Stable	98 Mo Stable	⁹⁹ Μο _β .	¹⁰⁰ Mo _{Stable}	¹⁰¹ Μο _β -	¹⁰² Μο	¹⁰³ Μο	1(
⁹¹ Nb e- capture	⁹² Νb	93Nb Stable	⁹⁴ Νb	⁹⁵ Νb	⁹⁶ Νb	⁹⁷ Νb	⁹⁸ Νb	⁹⁹ Νb	¹⁰⁰ Νb	1∩1 ⊾ • ∎ Primary Decay Mo ■ Stable β-	102 • • • de β+ 2β+	1
⁹⁰ Zr _{Stable}	⁹¹ Zr	⁹² Zr _{Stable}	⁹³ Ζr	⁹⁴ Zr _{Stable}	⁹⁵ Ζr	96 Zr _{Stable}	⁹⁷ Ζr β⁻	⁹⁸ Ζr	⁹⁹ Ζr	2β- n 2n e- capture e+ Stable	p 2p a Fission	·
										Estimated		

Technetium, Tc, has no stable isotope. Longest lived are 97 Tc and 98 Tc with $t_{1/2}$ = 4.2 million years

But Tc is observed in some stars!

- Which stars?
- AGB stars....
- That is a hint...!

Which isotope is made by the s-process?

Observing Tc in stars proves that nucleosynthesis happened in the star recently(ish)... Why?

Because ⁹⁹Tc has $t_{1/2} \sim 200,000$ years

SITE(S) OF THE S-PROCESS

Sites of heavy element nucleosynthesis

The s-process in massive stars

- Produce heavy elements in their He- and C-burning shells.
- Mainly the *weak* s-process, from Cu to the Sr peak
- Main neutron source is: ${}^{22}Ne(\alpha, n){}^{25}Mg$
- The ²²Ne abundance scales with Z
- Except, when there is rapid rotation!

From Choplin & Hirschi (2020)

Also Limongi & Chieff (2018), Frischknecht et al. (2016), Pignatari et al. (2010) etc.

AGB stars as element factories

Evidence of heavy-element production

- Y-axis is abundance ratio of X/Fe, relative to the Sun, in log units ٠
- Post-AGB star located in the Large Magellanic Cloud ۲

(KU Leuven)

Intrinsic and extrinsic AGB stars

- In order to discuss this question we need to make a few new definitions related to s-process enrichments:
 - Intrinsic = star that is self-enriched in s-process elements; is currently on the AGB experiencing thermal pulses and third dredge-up (N, SC, S, C-type AGB star).
 - Extrinsic = a star that obtained its s-process elements from another star, perhaps as a result of binary mass transfer (e.g., barium stars, CH stars, CEMP stars etc).
- How do we know a star is an "intrinsic" AGB star or extrinsic?
- Remember radioactive Tc?
- If a giant star is enriched in carbon, s-elements and Tc it must be "intrinsic" and recently made its own heavy elements.

Extrinsic s-process rich stars

- What if we find a star enriched in s-process elements (and maybe carbon) and there is no Tc present in the atmosphere?
- The star we observe is not an AGB star experiencing thermal pulses, and obtained its enrichment elsewhere.
- The next question: Is the star we see a binary?
- If yes, then the star obtained its heavy elements from binary mass transfer.

Roche Lobe Overflow (Credit: Pearson Education)

Barium, CH-, CEMP stars

- Long-period binaries where the originally more massive companion is now a white dwarf.
- We see evidence of nuclear processed material (e.g., C, Ba) on the surface of the present-day giant star.
- Evidence for mass transfer by stellar wind accretion.

3D hydro simulations from Saladino et al. (2019):

What AGB mass range make s-process elements?

- Observationally, the intrinsic AGB stars are mostly carbon-rich low-mass stars with initial masses ≤ 3 Msun
 - (e.g., Wallerstein & Knapp 1998, Gallino et al. 1998, Busso et al. 1999).
- Determining mass is difficult! (pre-GAIA... see Shetye et al. 2019, 2021)
- How are we sure??
- Post-AGB stars in the Magellanic Clouds have well determined masses. These originated from initial masses of 1-2Msun.

From before, showing strong s-process enrichment in a LMC post-AGB star. The well known distance means we can estimate the luminosity \rightarrow estimate core mass \rightarrow initial mass.

What AGB mass range make s-process elements?

- What about intermediate-mass stars?
- There is evidence that intermediate-mass AGB stars make s-process elements including Zr and Rb
 - (Smith & Lambert 1990, Wood et al. 1983, Garcia-Hernandez et al. 2006, 2009).
- We have observations of Rb-rich AGB stars in the Milky Way Galaxy.
- These are also oxygen rich, which is evidence of hot bottom burning.
- There are also very bright O-rich, Zr rich stars in the Magellanic Clouds.

5Msun, Z = 0.02 model from Garcia-Hernandez et al. (2013)

The s-process in AGB stars

The s-process: The effect of mass

Variation of stellar mass from low-metallicity models of [Fe/H] = -0.7 from Karakas et al. (2018):

Proton number, Z

The s-process: The effect of mass

Variation of stellar mass from low-metallicity models of [Fe/H] = -0.7 from Karakas et al. (2018):

Producing neutrons in the He-shell

Neutrons are released in ¹³C pockets – these form by mixing *a bit* of hydrogen into the intershell

Intershell: Mostly ⁴He (~75%)

- Mostly THE (~75%) and 12 C (~25%)
- Top layers are ashes of H-burning

Neutron production in the He-shell

Extra burst of neutrons from the $^{22}Ne(\alpha,n)^{25}Mg$ reaction, which takes place during thermal pulses

Theoretical models

Typical neutron density profile in time:	Low mass	Intermediate mass
Neutron source	¹³ C(a,n) ¹⁶ O	²² Ne(a,n) ²⁵ Mg
Maximum neutron density	10 ⁸ n/cm ³	10 ¹³ n/cm ³ ?
Timescale	10,000 yr	10 yr
Neutron exposure	0.3 mbarn ⁻¹	0.02 mbarn ⁻¹

(at solar metallicity)

Neutron density (cm⁻³): defines the details of the s-process path ²²Ne >> ¹³C

Neutron exposure t

The s-process: The effect of metallicity

Decrease in metallicity results in more s-process elements at the 2nd peak (Ba, La), then at the 3rd (Pb)

e.g., see also Gallino et al. (1998), Busso et al. (2001)

Why does metallicity do this?

1. ¹³C nuclei result in neutrons via ${}^{13}C(\alpha,n){}^{16}O$ and the main neutron absorber is ${}^{56}Fe$:

Neutron density \approx ¹³C / ⁵⁶Fe

2. ¹³C in the pocket is produced by proton captures on primary ¹²C, from triple-alpha in the He shell: ¹³C is a primary neutron source!

Clayton (1988)

What are the implications?

3. The neutron density scales with the inverse of ⁵⁶Fe, i.e., with the metallicity.

This means that lower metallicity stars produce more neutrons and more heavier elements. [Ba/Sr] (or [Ce/Y]) should increase with decreasing metallicity

From observations of Barium stars

Cseh et al. (2018) compared the data with model predictions:

Neutron density indicators

At high neutron densities, two branching points open that allow rubidium to be produced. At $N_n=5 \times 10^8 \text{ n/cm}^3 \sim 80\%$ of the flux goes through ⁸⁵Kr, and the branching at ⁸⁶Rb opens to make ⁸⁷Rb

- 1. ⁸⁵Rb has a high σ = 240 mb (30 keV)
- 2. ⁸⁷Rb is magic, has a low σ = 15 mb (30 keV)

→ Rb in AGB stars in an indicator of the neutron density!

⁸⁶Kr, ⁸⁷Rb, and ⁸⁸Sr are
all magic, with low neutron capture
cross sections
In low-mass stars: ⁸⁸Sr produced
In massive AGB: ⁸⁷Rb

Zr,Sr/Rb > 1 → low-mass AGB Zr,Sr/Rb < 1 → > 4Msun AGB

Intrinsic s-process indicators

- [Is/Fe] = light s-process elements (e.g., Y, Sr, Zr) where
 [Is/Fe] = ([Y/Fe] + [Sr/Fe] + [Zr/Fe]) / 3
- [hs/Fe] = heavy s-process elements, typically choose 2-4 elements (e.g., Ba, La, Ce)
- Example for 3Msun models of different metallicity:

[Fe/H]	[Rb/Zr]	[ls/Fe]	[hs/Fe]	[hs/ls]	[Pb/hs]
+0.3	-0.57	1.16	0.92	-0.24	-0.39
0.0	-0.73	1.47	1.44	-0.03	-0.28
-0.3	-0.70	1.64	1.96	0.32	-0.20
-0.7	-0.30	1.32	1.98	0.67	+0.40
-1.8	+0.12	1.30	1.66	0.36	+1.03

PUZZLES AND THE I-PROCESS

Problems with theoretical picture

Post-AGB stars: Evolved from stars of low-mass, 1-1.5Msun at relatively low metallicity, [Fe/H] ~ -1 (e.g., De Smedt et al. 2014; van Aarle et al. 2013)

Figure from Kenneth De Smedt
Neutron production is still poorly understood

Neutrons form in ¹³C pockets – we don't know how these form!

Neutron production is still poorly understood

How much hydrogen is need to make a ¹³C pocket? We don't really know. This is a big uncertainty in models of the s-process

The intermediate neutron-capture process

Neutron flux determines whether we have an s or r-process:

- r-process: $N_n > 10^{20} n/cm^3$
- s-process: N_n < 10¹³ n/cm³

During the *r* process: Time scale (n,g) << τ_{β}

During the *s* process: Time scale (n,g) >> τ_{β}

- Intermediate-neutron capture process (Cowan & Rose 1977)
- Proton ingestion into a He-burning region will produce neutron densities of ~10¹⁵ n/cm³ (Campbell et al. 2010, Herwig et al. 2011)
- Are the Pb abundances in post-AGB stars evidence of this?
- What about the carbon-enhanced metal-poor stars, which show enrichments in both s and r-process elements? (Lugaro et al. 2012)

The i-process in post-AGB stars

 Neutron density of ~10¹¹ n/cm³ can produce a pattern that matches (solid blue line). From Hampel et al. (2019):

CEMP-*r*/*s* stars: what was the progenitor?

- Best-fitting model for CEMP-s/r star LP625-44 (solid blue) compared to an s-process with an r-process foundation,
- From Hampel et al. (2019):

Where does the *i*-process occur in nature?

- Low and intermediate-mass stars of low-metallicity? (Lugaro et al. 2015, Jones et al. 2016)
- Metal-free massive stars? (Banerjee et al. 2018, Clarkson et al. 2018)
- Accreting white dwarfs? (e.g., Hillebrandt et al. 1986, Côté et al. 2018, Denissenkov et al. 2017, 2019)

How will the i-process affect the (early) chemical evolution of the Galaxy? Côté et al. 2018 suggests important for the first s-process peak (Sr, Y, Zr). Anything else?

CHEMICAL EVOLUTION OF HEAVY ELEMENTS

Chemical evolution of heavy elements

- First, make a chemical evolution model that matches broad observational features of the Galaxy (e.g., metallicity distribution function)
- References: Pagel (textbook), Tinsley (1980), Kobayashi et al. (2011, 2020)
- Add yields of heavy elements:
 - 1. AGB yields including s-process elements.
 - 2. Massive star yields including s-process.
 - 3. r-process yields from merging neutron stars.
 - 4. Magneto-rotational SN yields for the r-process.

Caveats can include:

- The delay-time distribution of neutron star mergers is highly uncertain.
- Massive star yields significantly depend on the details of rotation.
- AGB yields depend on the treatment of the ¹³C pocket and mass-loss.

AGB chemical yields

Example: [Fe/H] = 0 (solar) from Karakas & Lugaro (2016)

Yield = amount of an isotope ejected into the ISM over the star's lifetime

Yield definition: $y_{k} = \int_{0}^{\tau} [X_{k}(t) - X_{k}(0)] \frac{dM}{dt} dt$

Black dots = weighted by the Salpeter initial mass function, i.e.,

```
\frac{dN}{dM} \propto M^{-2.3}
```

AGB chemical yields

Example: Ba from models of [Fe/H] = 0 (solar) from Karakas & Lugaro (2016)

Yield = amount of an isotope ejected into the ISM over the star's lifetime

Black dots = weighted by an IMF

- Here we see that the intermediatemass range are *weighted out* by the IMF.
- That is, their contribution is less important because there are so few of them.

AGB yields with s-process elements

- Monash group: Lugaro et al. (2012), Fishlock et al. (2014), Karakas & Lugaro (2016), Karakas et al. (2018); yields of 1 to ~8Msun (-2.3 ≤ [Fe/H] ≤ +0.3)
- FRUITY database: Cristallo et al. (2015); includes a few models with rotation (-2.15 ≤ [Fe/H] ≤ +0.15)
- NuGrid/MESA: Pignatari et al. (2016), Ritter et al. (2018), Battino et al. (2019); for Z = 0.001, 0.006, 0.01 and 0.02, 0.03
- At very low metallicities: Goriely & Siess (2001), Campbell et al. (2010), Bisterzo et al. (2010), and Cruz et al. (2013) but no tabulated yields

What is lacking? Yields for low metallicity for all masses. Super-AGB yields.

Galactic chemical evolution models

From Kobayashi, Karakas & Lugaro (2020)

- Yb = Ytterbium, Hf = Halfnium, Ir = Iridium, Pb = Lead,
- Th = Thorium, U = Uranium.

See also Côté et al. (2018); Prantzos et al. (2020)

History of Strontium in the Galaxy

This model matches the solar composition of Sr with yields from s- and r-processes alone.

Do we even need an i-process? Maybe, at low metallicities?

From Kobayashi, Karakas & Lugaro (2020)

Summary: Origin of heavy elements

Unusual supernovae?

Neutron star mergers

Massive stars

AGB stars?

Massive stars?

The r-process ~50%?

The s-process ~50%

The i-process ??

Summary

- AGB stars are the last complex phase of evolution of low and intermediatemass stars.
- Brief phase leads to complex nucleosynthesis which depends on mass and metallicity.
- Main result: AGB stars make carbon, nitrogen, fluorine etc.
- The s-process is one pathway involving neutron captures to make roughly half of all elements heavier than iron.
- Main site of the s-process is AGB stars, where details depend on neutron production and ultimately, density.
- There is observational evidence for an intermediate-neutron capture process in nature. Site is AGB stars? Accreting white dwarfs? Metal-poor massive stars?
- Still many open questions!