lsotopes in Stardust: Presolar Oxygen-Rich Grains

ANN N. NGUYEN NASA Johnson Space Center, Houston TX

Presolar Stardust

- Grains condense around masslosing evolved stars
- Survive processing in space and during formation of the solar system
- Incorporated into asteroids and comets
 - Find surviving stardust grains in meteorites, interplanetary dust particles, and cometary samples
- Presolar grains preserve isotopic compositions of parent stellar sources

Outline

- 1. Presolar grain identification
- 2. Analytical techniques in the lab
- 3. Isotopic studies of presolar O-rich grains
 - a. Stellar evolution, nucleosynthesis, mixing
 - b. Stellar origins of different groups of O-rich presolar grains
 - i. AGB grains
 - ii. SN grains
 - iii. Nova grains

Primitive Chondrites

Asteroid Return Samples

Interplanetary Dust Particles

Comet Return Samples

110

How are presolar grains isolated?

"burning down the haystack to find the needle"...

Allende carbonaceous chondrite

Acid dissolution - dissolve meteorites in acids and analyze residue

In situ analyses

How are presolar grains identified?

- Isotopic compositions of many elements are vastly different from any Solar System material
- Compositions cannot be produced by chemical reactions and require *nuclear processes in stars*

Large ¹⁷O and ¹⁸O enrichments produced in supernovae via H and He burning

Types of Presolar Grains

- First presolar grains (diamond, SiC, graphite) discovered by exotic noble gas signatures in 1987 (Lewis et al. 1987, Bernatowicz et al. 1987, Amari et al. 1990)
- More detailed isotopic studies and identification of additional presolar phases and subtypes made possible by Secondary Ion Mass Spectrometry (SIMS)

What can we learn from presolar grains?

- Stellar nucleosynthesis
- Stellar evolution and mixing processes
- Galactic chemical evolution
- Major stellar sources of dust
- Dust condensation conditions in circumstellar environments
- Dust processing in the interstellar medium
- Processing in the early solar system
- Processing on the asteroid or comet parent body

 Presolar silicate grains are unique probes of these processes

- Spatial resolution > 1 micron
- Measure one mass at a time
- Allow for in situ analyses

NanoSIMS ion probe @ NASA JSC

- High spatial resolution (~100 nm)
- High transmission at high mass resolution
- Multiple masses and isotopic systems measured simultaneously
- Raster ion imaging capability
- Major and minor element isotopic measurement of single sub-μm grains

Techniques: Resonance Ionization Mass Spectrometry (RIMS)

- Lasers used to selectively ionize specific elements
- Heavy trace element isotopic analysis of single grains > 1 μ m
- → Nan Liu's talk

"CHARISMA" Argonne National Lab

Techniques: Transmission Electron Microscopy (TEM)

Determine mineralogy, structure and chemical compositions on nm-scale

JEOL 2500 FE-TEM @ NASA JSC

Quantitative, nm-scale chemical mapping
 Atomic scale imaging and mineral analysis
 Oxidation state determination by EELS

 ✓ Used to prepare samples for TEM and NanoSIMS analyses

Isotopic Studies of Presolar O-rich Grains

- Nearly all SiC grains are presolar and can be identified by X-ray mapping or isolated by acid dissolution
- Solar System formed under oxidizing conditions producing a majority of Orich dust
- Higher background of O-rich grains having "normal" isotopic composition
- Isotopic compositions of O-rich grains must be determined to establish their presolar nature → SIMS studies (isotopic imaging)

Isotopic Studies of Presolar O-rich Grains

- Silicate grains susceptible to destruction by alteration on asteroid or comet parent body and by laboratory treatment
 - Only preserved in very primitive samples (little aqueous alteration)
 - Cannot be chemically isolated like SiC and oxide grains
- Silicate grains have small sizes (average 250 nm)
 - Requires high spatial resolution → NanoSIMS

Nguyen & Zinner Science 2004

O Isotopic Compositions of Presolar O-rich Grains

- Isotopic compositions of red giants similar to those of presolar O-rich grains
- Ratios from SIMS measurements of presolar grains have much higher precision than spectroscopic observations
- Isotopic compositions reflect distinct stellar sources and nucleosynthetic processes

Evolution of 1–8 M_{\odot} Stars

- 1st Dredge-up:
 - Mix MS (core) H-burning products into envelope
 - > Enrich ¹⁷O, deplete ¹⁸O
- 2^{nd} Dredge-up (>3 M_{\odot}):
 - Further mixing of H-burning products
- 3rd Dredge-up:
 - Mix H-, He-burning shell material
 - o ¹²C, *s*-process elements
 - \circ C > O with repeated 3rd dredge-up
 - Carbonaceous phases condense

Evolution of 1–8 M_{\odot} Stars

- 1st Dredge-up:
 - Mix MS (core) H-burning products into envelope
 - > Enrich ¹⁷O, deplete ¹⁸O
- 2^{nd} Dredge-up (>3 M_{\odot}):
 - Further mixing of H-burning products
- 3rd Dredge-up:
 - Mix H-, He-burning shell material
 - o ¹²C, *s*-process elements
 - \circ C > O with repeated 3rd dredge-up
 - Carbonaceous phases condense

Processes affecting O, Mg, and Si Isotopes: Galactic Chemical Evolution

- Chemical composition of the Galaxy evolves with time as generations of stars are born and die – products of nucleosynthesis ejected into ISM
- Metallicity (Z) increases with time
 - Z = mass fraction elements heavier than He
- Isotopic ratios change over time
 - Primary (major) isotopes (e.g., ¹⁶O, ²⁴Mg, ²⁸Si) can be produced from H, He
 - Secondary (minor) isotopes (e.g., ¹⁷O, ¹⁸O, ²⁵Mg, ²⁶Mg, ²⁹Si, ³⁰Si) require pre-existing CNO
 - Secondary isotopes enhanced relative to primary isotopes with time
 - (Secondary isotope)/(primary isotope) ratios increase with time (e.g., ¹⁸O/¹⁶O, ²⁵Mg/²⁴Mg, ³⁰Si/²⁸Si)

Nuclear Reactions Affecting O, Mg, and Si Isotopes

REACTION	O ISOTOPES	MG ISOTOPES	SI ISOTOPES
p-capture	${}^{16}O \rightarrow {}^{17}O$ ${}^{17}O \rightarrow {}^{18}O$ ${}^{18}O \rightarrow {}^{15}N$	²⁵ Mg → ²⁶ Al··· > ²⁶ Mg	
n-capture		$^{26}AI \rightarrow ^{26}Mg$	²⁸ Si → ²⁹ Si ²⁹ Si → ³⁰ Si
α -capture	$^{12}C \rightarrow ^{16}O$ $^{13}C \rightarrow ^{16}O$	²² Ne \rightarrow ²⁵ Mg and ²⁶ Mg	

- AGB stars: reactions occur in H- and He-burning shells; products brought to the surface by 3rd dredge-up
- SN: reactions occur in multiple zones

Extra Mixing Processes AGB Stars

From Lugaro et al. 2017

- Material processed in H-burning region cycled into the envelope (enhances ²⁶Al, destroys ¹⁸O)
- Cool Bottom Processing (CBP) in low mass stars envelope gets close to H-burning region and radiative extra mixing brings processed material into envelope (Wasserburg et al 1995, Nollett et al 2003)
- Hot Bottom Burning (HBB) in intermediate mass stars material at base of envelope gets hot enough to undergo H-burning, and mixing occurs via convection (Boothroyd et al 1995, Lugaro et al 2007)

Stellar Sources "Group 1" Grains

- Ratios of *most* Group 1 grains explained well by formation around low mass (< 3 M_☉) RG and AGB stars
- Dredge-up brings products of Hburning to stellar envelope
- Stellar mass inferred from ¹⁷O/¹⁶O (dredge-up depth increases with mass)
- Stellar metallicity (Z) inferred from ¹⁸O/¹⁶O
 - Range of metallicities agree well with GCE model predictions

Si Isotopic Ratios AGB Grains

Si isotopic ratios of AGB SiC and silicates largely governed by GCE, but silicate grains have less contribution from AGB nucleosynthesis

Mg Isotopic Ratios "Group 1" Oxides

- Many grains agree with GCE and AGB models
 - Parent stars have a range of mass and Z
- Some grains have larger
 ²⁶Mg excesses from ²⁶Al decay than models predict
 - Extra mixing processes?
 - SN Sources?
- ²⁵Mg excesses of some grains exceed model predictions for O-rich stars
 - GCE origin
 - Origin in massive star experiencing HBB

Mg Isotopic Ratios "Group 1" Oxides: GCE

 Grain data fit best by "Fenner 1" model of GCE that includes nucleosynthetic contributions from AGB stars

Mg Isotopic Ratios "Group 1" Silicates

- Recent Mg isotopic analyses of Group 1 silicates revealed subgroups
- Compositions of "normal" grains follow GCE → low-mass AGB stars
- ²⁶Mg-rich and ²⁵Mg-poor grains from supergiants (pre-SN stars) or SN
- ²⁵Mg-rich grains could have SN (Leitner et al. 2019; Hoppe et al 2021) or super-AGB (Verdier-Paoletti et al. 2019) sources.
- Grains with smaller ²⁵Mg enrichments could derive from intermediate-mass, high Z AGB stars (Hoppe et al 2021)

From Hoppe et al. 202

Stellar Source "Group 3" Grains

- From low mass, low metallicity RG and AGB stars
- Low ¹⁷O/¹⁶O and ¹⁸O/¹⁶O ratios reflect GCE
- Parent stars formed early in the Galaxy

Stellar Source "Group 2" Grains

- ¹⁸O depletions require extra mixing processes
- CBP in low-mass AGB stars? (Wasserburg et al 1995, Nollett et al 2003)
- HBB in intermediate mass (>4 M_☉) AGB stars? (Boothroyd et al 1995, Lugaro et al 2007)

Stellar Sources "Group 2" Grains

- ¹⁸O depletions require extra mixing processes
- CBP in low-mass AGB stars? (Wasserburg et al 1995, Nollett et al 2003)
- HBB in intermediate mass (>4 M_☉) AGB stars? (Boothroyd et al 1995, Lugaro et al 2007)
- New experimentally determined ¹⁷O(p,α)¹⁴N reaction rate supports HBB (Lugaro et al. 2016)

AGB Mixing Processes

- Grains with large ²⁶Mg excess from in situ decay of ²⁶Al
- ²⁶Al/²⁷Al ratios exceed values from shell H-burning and 3rd dredge-up in AGB stars (Karakas & Lattanzio, 2003)
- During CBP, ¹⁸O destruction depends on rate of mass circulation
- ²⁶Al production depends on temperature (depth) reached by material

Stellar Source "Group 4" Grains

- Mixing of material from various supernova zones can reproduce O isotopic compositions
- SN sources strengthened by observed isotopic anomalies in other elements

Mg Isotopic Compositions Group 4 Grains

Adapted from Nguyen & Messenger, ApJ 2014

- ¹⁸O from He/C zone, ¹⁷O from H envelope
- ²⁶Mg from O/Ne, O/C zones, ²⁵Mg depletion from He/C zone
- Must mix various proportions of different SN zones to produce isotopic ratios

$15~M_{\odot}$ SN Model Fits to Grain Data

Nguyen & Messenger, ApJ 2014

- Perform mixing calculations to fit grain data using one $15 M_{\odot}\,\text{SN}$ type II model
- Mixing < 2% inner zone material with outer zones produces good fits to the grain data with a few discrepancies

$15~M_{\odot}\,SN$ Model Fits to Grain Data

Nguyen & Messenger, ApJ 2014

- Model underproduces ¹⁷O in two grains
- Better fits are obtained with SN models of lower mass

$15~M_{\odot}$ SN Model Fits to Grain Data

Nguyen & Messenger, ApJ 2014

- Model underproduces ²⁹Si
- Travaglio et al. (1998) suggested 2x increase in ²⁹Si production in O/Ne and O/Si zones
 - Modification invoked to explain unusually ²⁹Si-rich supernova SiC (Hoppe et al. 2009)
- ➢Doubling ²⁹Si yield in O/Ne and O/Si zones reproduces ²⁹Si/²⁸Si of the grains

$15~M_{\odot}$ SN Model Fits to Grain Data

- Predicted ⁵⁴Fe excesses are not observed in these silicate grains nor SiC X grains
- Possible elemental fractionation in the Si/S zone

Presolar Chromite: Electron-Capture SN Sources

- ⁵⁴Cr enrichments in small oxide grains (Nittler et al. 2018, Dauphas et al. 2010, Qin et al. 2011)
 - 40 300 nm
 - Anomalies increase with decreasing grain size
 - Carriers of bulk Cr variations in solar system materials
- Mass-50 enrichments may be ⁵⁰Ti rather than ⁵⁰Cr
- High-density Type Ia supernovae (SN Ia)?
- Electron-capture supernovae (ECSN) from core collapse of super-AGB stars (8-10 M_☉)?

Presolar Chromite: Electron-Capture SN Sources

- Existence of ECSN theorized 40 years ago
- Recent evidence for ECSN!! (Hiramatsu et al. 2021 Nature Astronomy)

Stellar Source "Extreme ¹⁷O-rich" Grains

- Extreme ¹⁷O enrichments cannot be produced by AGB nucleosynthesis
- Novae produce abundant ¹⁷O through explosive H-burning
 - Accretion H-rich material onto white dwarf

- Previous nova models produced large amounts of ¹⁷O and ¹⁸O (José et al. 2004)
- Models did not fit presolar grain data
- Updated reaction rates for
 ¹⁷O(p,γ)¹⁸F and ¹⁸F(p,γ)¹⁹Ne
 → lower predicted ¹⁸O abundances

 O composition of most presolar silicates and oxides best matched by strong dilution of 1.15 M_☉ CO nova (~2%) with isotopically close-to-solar material (companion star?)

From Nguyen & Messenger 2014

- Nova models generally predict much more extreme ²⁵Mg and ²⁶Mg enrichments than observed in stardust grains
- Mg compositions of most presolar grains consistent with 0.6 M_{\odot} CO nova, but also strong dilution of nova models

- Most nova models produce large ²⁹Si depletions
- One model produces large ²⁹Si and ³⁰Si enrichments
- Si isotopic ratios of two presolar silicates matched by 0.6 M_{\odot} CO nova, but also strong dilution of nova models
- ^{29}Si enrichment of silicate grain 4_7 matched by strong dilution of 1.35 M_{\odot} ONe nova

- New CO nova model simulations match compositions of some grains (mainly SiC) without dilution (Iliadis et al. 2018)
- Some "nova" SiC grains now likely SN (Liu et al. ApJ 2016)

Summary

- Isotopic analysis of presolar stardust grains in the lab is a powerful method for conducting astronomy with high precision
- Allow for tight constraints to be placed on astrophysical models of stellar evolution, nucleosynthesis, GCE
- Especially important is obtaining the isotopic compositions for multiple elements within single grains!
- Have identified presolar O-rich grains from AGB stars, super-AGB, SN, ECSN, nova