Isotopes in Stardust: presolar silicon carbide grains

Nan Liu Department of Physics Washington University in St. Louis 09/14/2021

"The nitrogen in our DNA, the calcium in our teeth, the iron in our blood, the carbon in our apple pies were made in the interiors of collapsing stars. We are made of star stuff."

Where the telescope ends, the microscope begins.

Types of Presolar Grains

See Ann Nguyen's lecture that introduces presolar grains, solar system, and meteorites

- First presolar grains (diamond, SiC, graphite) discovered by exotic noble gas signatures in 1987 (Lewis et al. 1987, Bernatowicz et al. 1987, Amari et al. 1990)
- More detailed isotopic studies and identification of additional presolar phases and subtypes made possible by Secondary Ion Mass Spectrometry (SIMS)

Solar System Composition

Marty et al. (2011), Lyons et al. (2016)

Mckeegan et al. (2011)

Why are They Presolar Grains?

Huge Isotopic Anomalies!

How can we find presolar grains in pristine meteorites? Cooking meteorites in acids

SiC graphite Si₃N₄ nanodiamond oxides

Outline

1. Analytical Techniques

- 2. Different Types of Grains and Their Stellar Origins
- 2.1 AGB Dust
- 2.2 Type II Supernova Dust
- 2.3 Mysterious ¹³C-rich SiC Dust

SIMS versus RIMS: Sputtering

SIMS Ionization

RIMS Ionization

Elements Accessible to SIMS and RIMS

	Secondary Ion Mass Spectrometry																
Н																He	
Li	Be						В	С	Ν	0	F	Ne					
Na	Mg	g												Ρ	S	CI	Ar
K	Ca	Sc	Fi	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac															

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am								

Resonance Ionization Mass Spectrometry (concentration down to ppm-ppb level)

Elements Accessible to SIMS and RIMS

	Secondary Ion Mass Spectrometry																
Н																	He
Li	Be						В	С	Ν	0	F	Ne					
Na	Mg	<mark>Vg</mark>												Ρ	S	CI	Ar
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe
Cs	Ba	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Ро	At	Rn
Fr	Ra	Ac															

Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Th	Pa	U	Np	Pu	Am								

Resonance Ionization Mass Spectrometry (concentration down to ppm-ppb level)

Outline

1. Analytical Techniques

2. Different Types of Grains and Their Stellar Origins

2.1 AGB Dust

2.2 Type II Supernova Dust2.3 Mysterious ¹³C-rich SiC Dust

See Amanda Karakas's lecture on *s*-process and AGB stars

Stellar Origins of Presolar SiC

formed in C-rich envelope of lowmass asymptotic giant branch stars

AGB: Asymptotic Giant Branch, an advanced evolutionary stage of stars with masses below ~8 M $_{\odot}$. **C-rich AGB**: Parent stars of C-rich presolar grains, ~1.5–3 M $_{\odot}$.

Stellar Origins of SiC from AGB Stars

Grain-Observation Discrepancy

Asteroidal and Terrestrial Contamination

Supernova

Protoplanetary Disk

AGB Star

Asteroids and Comets

Meteorites and

Interplanetary

Dust Particles

Larry Nittler

Additional terrestrial contamination caused by e.g., acid dissolution and laboratory analysis.

A mainstream SiC coated by organic gunk.

Approach to Suppress Contamination

Extensive Sputtering

50nm beam diameter under ideal conditions

- The majority of MS, Y, and Z grains came from classical AGB stars, N-type stars (the most abundant type of carbon stars).
 - Contamination is always a problem when interpretating presolar grain data.

AGB Stars: main stellar site for s-process

SPECTROSCOPIC OBSERVATIONS OF STARS OF CLASS S

PAUL W. MERRILL MOUNT WILSON AND PALOMAR OBSERVATORIES CARNEGIE INSTITUTION OF WASHINGTON CALIFORNIA INSTITUTE OF TECHNOLOGY Received February 27, 1952

ABSTRACT

This paper presents a brief survey of S-type spectra based largely on spectrograms with dispersion 9 A/mm of eight stars obtained by I. S. Bowen with the 200-inch telescope. The intensities of severa groups of absorption lines and bands and of the more important emission lines are compared in variou stars. Radial velocities from both bright and dark lines and a supplementary list of absorption lines iden tified in the green region are included. The remarkable behavior of certain bright lines of V I and of Cr in the spectrum of R Cygni is described.

Ru98	Ru99	Ru100	Ru101	Ru102
0+	5/2+	0+	5/2+	0+
1.88	12.7	12.6	17.0	31.6
Tc97 2.6E6 y 9/2+	Tc98 4.2E+6 y (6)+	Tc99 2.111E+5 y 9/2+	Tc100 15.8 s 1+	Tc101 14.22 m (9/2)+
EC *	β-	β-	β-	β-
Mo96	Mo97	Mo98	Mo99	Mo100
0 ÷	2+	0 +	65.94 h	1.2E19 y 0+
16.68	9.55	24.13	β-	β-β- 9.63

In situ production of Tc inside AGB stars!

s-Process: slow neutron-capture process

s-Process: slow neutron-capture process

Major Neutron Source for s-Process: ${}^{13}C(\alpha,n){}^{16}O$

convective envelope He intershell **(H)** (¹²C)

¹³C(α ,n)¹⁶O: providing neutrons with a density of 10⁷ to 10⁸ cm⁻³, in agreement with solar system *s*-process distribution and astronomical observations of *s*-process elements.

Problem for AGB Stellar Modelers: local mixing of H into He-intershell

Discrepant Modeling Results for Mixing

Smoking Guns for Constraining ¹³C Formation

MS SiC Isotopic Data of Sr, Ba

MS SiC Isotopic Data of Sr, Ba and Ni

Smoking Guns for Constraining ¹³C Formation

Post-process Nucleosynthesis Calculations

Standard Exponential ¹³C-Pocket

Standard Exponential ¹³C-Pocket

Standard Exponential ¹³C-Pocket

Mixing of H by Magnetic Buoyancy

Yes, Trippella Pocket works!

Fully Coupled Stellar and Nucleosynthesis Calculations

The Crucial Role of Magnetic Buoyancy is Further Supported!

Overshoot: no consistent match Magnetic: consistent match

Vescovi et al. (2020) ApJL

The Crucial Role of Magnetic Buoyancy is Further Supported!

Outline

1. Analytical Techniques

2. Different Types of Grains and Their Stellar Origins

2.1 AGB Dust

- 2.2 Type II Supernova Dust
- 2.3 Mysterious ¹³C-rich SiC Dust

Supernova Explosion & Dust Formation

Scientific visualization of supernova evolution (A. Angelich)

Supernova Nucleosynthesis

⁴⁴Ti (formed during α-rich freeze-out)

н

He

С

Ne

0

Si

Fusion Reactions $^{1}H+^{1}H\rightarrow^{2}He$ $^{16}O+^{16}O\rightarrow^{28}Si+\alpha$

Extinct ⁴⁴Ti in X Grains

SN models predict large excesses in ⁴³Ca compared to ⁴⁴Ca. The observed ⁴⁴Ca excesses therefore point to the decay of ⁴⁴Ti.

²⁸Si Excesses in Si/S Zone

simulated

Mösta et al. (2014) ApJL

-B

²⁸Si Excesses in Si/S Zone

Origin of ⁴⁹Ti in X Grains

⁴⁹Ti Correlates with ²⁸Si Excesses

⁴⁹Ti Correlates with ²⁸Si Excesses

Calculation of δ^{49} Ti in the Si/S Zone

Calculation of δ^{49} Ti in the Si/S Zone

Dust Production in SN 1987A Over 30 Years

Dust mass (M_o)

Dust formation can occur as early as a few months after SN explosions (e.g., Andrews et al. 2016).
But VERY FEW SNe have been observed to quantify dust production later than 1000 days.
The inferred timescale for grain formation in SN 1987A is CONSISTENT with the grain data, >2 yrs.

Outline

1. Analytical Techniques

2. Different Types of Grains and Their Stellar Origins

2.1 AGB Dust

- 2.2 Type II Supernova Dust
- 2.3 Mysterious ¹³C-rich SiC Dust

¹³C-rich Grains: What are Their Stellar Sources?

Linking AB Grains to Stars

Two Groups of AB Grains

Liu et al. (2016) ApJ, 820, 140; Liu et al. (2017) ApJL, 844, L12; Liu et al. (2017) ApJL, 842, L1

¹⁴N-rich AB : Mainly J-type Stars

Similarities between ¹⁴Nrich AB grains and Jtype stars

- near-solar metallicities.
- similar C and N isotope ratios.
- close-to-solar heavyelement isotopic compositions.
- Both are relatively abundant.

J-type star observations: Abia & Isern (2000) *ApJ*, 536, 438

¹⁵N-rich AB Grains : *Supernovae?*

- ¹⁴N-rich AB grains overlap with Jtype carbon stars and a few ¹³Crich SC-type carbon stars in their C and N isotopic composition.
- No carbon stars lie in the region where ¹⁵N-rich AB grains are located, pointing out that these grains were likely sourced from the ejecta of explosive events, e.g., supernovae.

Conclusions

	Secondary Ion Mass Spectrometry																
Н					τηο	ut si	gnii	icar	nt is	opa		nter	tere	nce	S)		He
Li	Be						В	С	Ν	0	F	Ne					
٧a	Mg						AI	Si	Ρ	S	CI	Ar					
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
Rb	Sr	Y	Zr	Nb	Мо	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
Cs	Ba	La	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	ΤI	Pb	Bi	Po	At	Rn
Fr	Ra	Ac						-									
	-		Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu	
			Th	Pa	U	Np	Pu	Am		-	-	-	-	-	-	-	-

Resonance Ionization Mass Spectrometry (concentration down to ppm-ppb level)