Isotopes in Cosmic Sites: Observations and Lessons

Roland Diehl

Max Planck Institut für extraterrestrische Physik Garching, Germany

How cosmic isotopes are being made, and how measurements enable us to study this

Contents:

- 1. Isotopes in the cosmos
- 2. Nuclear reactions and cosmic sites
- 3. Astronomy of cosmic isotopes
- 4. Lessons learned and open questions

Nuclei in the Cosmos 2021 School, Sep 2021

Cosmic origins of the variety of nuclides

Associating different "processes" with nuclide groups – that's what we teach...

Science with Cosmic Isotopes

☆Trace the forms of cosmic matter

☆Understand the sources of new nuclei

rare sources are a challenge (& speculation)....

3

Messengers for Cosmic Nucleosynthesis: Issues

Complex and variate nuclear-reaction flows

• Cosmic nuclear-reaction sites are embedded

☆ Stars:

^{CP} inactive envelope is ~90% of stellar mass

- ☆ Supernovae:
 - envelopes large (SN II) or small (SN Ia)
- ☆ Kilonovae:

How do we measure nuclei in cosmic sites?

Diversity of Complementing Observing Methods

A closer look: The Sun

Telescopes can see many exciting surface phenomena...

STEREO Ahead EUVI 304

Solar Dynamic Observatory

Nuclei in the Cosmos 2021 School, Sep 2021

Signatures of Elements

Spectral lines in the spectrum of Sunlight

Nuclei in the Cosmos 2021 School, Sep 2021

Spectrographs in optical telescopes today

• Make use of wavelength-dependent propagation in materials

Optical Spectra: Observables of Stars

Jacoby, B. H., Hunter, D. A., and Christian, C. A. 1984, Astrophys. J. Supp. Ser., 56, 257

Solar Photospheric Abundances

improvements of

- ☆ measurement technique,
- interpretation(line shape modeling)
 - 3D atmosshere models for convective motion
 - atomic-line calibrations
 - non-LTE population of ionisation states

→ C,N,O abundances reduced 2009 by ~30% wrt 1998 reference

Asplund+2009, 2015...

Fig. 2. Photospheric abundance determinations over time

Solar Elemental Abundances

determined from 3D-NLTE analyses of solar spectra

Solar Elemental Abundances

Asplund & Grevesse 2021 7.60 3D non-LTE: Stagger 3D model -ogarithmic Fe abundance 7.55 Fel ∆ Fell • 7.50 7.45 7.40 7.35 2 5 0 3 1 **Excitation potential [eV]** 7.60 1D non-LTE: Holweger & Mueller 1974 -ogarithmic Fe abundance 7.55 7.50 7.45 7.40 7.35 0 2 3 5 1 **Excitation potential [eV]**

3D-NLTE analyses of solar spectra reveal differences to previous spectral analyses:

Fe abundance independent of the particular line excitation energies

Stellar Surface Spectroscopy

- This messenger of cosmic abundances is applied widely
- Multiple lines per species, with different ionization states; wavelength-dependent depth / location of photosphere: gas kinematics (microturbulence) determines line shapes
- Spectral modeling, using atomic data & atmosphere model, is key to precision results

• Astrophysical history of photospheric gas requires modeling (gravitational settling; nuclear burning; chemical processing, ...)

Spectral Modeling (CANNON), varying log g

Challenge: r-process ejecta from neutron star collisions?

- → elemental-lines are broad / fuzzy due to Doppler shifts & broadenings of dynamic ejecta Large number of lines (~10⁵), need for laboratory references & libraries
- unclear abundance signatures, unclear chemical-evolution impact

(ejecta masses, fresh vs prior synthesis, rare events) Nuclei in the Cosmos 2021 School, Sep 2021

Highly-dynamic gas evolution (\rightarrow bulk motion, opacity evolution)

Elemental yields are expected in variety

Solar Elemental Abundances

determined from laboratory analyses of meteoritic material (CI chondrites=oldest)

pre-solar grains: a new astronomical messenger

* isotopic anomalies wrt solar-system materials by many orders of magnitude

Figure 1 Scanning electron micrographs of presolar dust grains. (a) Silicon carbide, (b) Graphite, (c) TEM image of graphite slice with interior TiC grain, (d) Aluminum oxide, (e) Spinel (only ~2% of the grains in this image are presolar), (f) Silicate.

☆ study AGB stars (=dust producers)

nuclear burning in shells of AGB star (HBB)

Solar Abundances: Photospheric vs Meteoritic

General agreement,

but upon closer inspection also discrepancies:

Solar Abundances: Photospheric vs Meteoritic

General agreement, but upon closer inspection also discrepancies:

- gases & volatile elements underabundant in CI meteorites
- moderately-volatile elements enriched in CI meteorites
- other primitive meteorites (CM matrix) agree better to photospheric abundances \rightarrow CI formation bias?

Solar abundances: isotopes

- Careful before interpretation: Biases of material samples are significant
 - using meteoritic & solar-wind data and theory for estimations of their evolutionary biases
 Asplund & Grevesse 2021

Solar Isotopic Abundances: Data vs ChemEv Model

Nuclear Burning: H to He

• H Burning: the p-p Chains

Modeling our Sun: Neutrinos from H fusion reactions

- Core hydrogen burning, hydrostatic equilibrium
- Parameters:
 - Y (He abundance), Z (metallicity)
 - Mixing length α
- Outputs:
 - Luminosity (energy), neutrinos

Bahcall+2006

Borexino: lower energy neutrinos (<8B)

• Scintillation Detector in Gran Sasso Lab. (Italy)

Suppress very efficiently other background

Neutrinos from H burning confirm solar model basics

The variety of "astronomies"

... beyond astronomical telescopes of optical light:

Detection of Radiation from Isotopes

Current Nuclear Gamma-Ray Line Telescopes

INTEGRAL

2002-(2021+..2029)

ESA

high E resolution Ge detectors 15-8000 keV

NuSTAR (only <80 keV!)

2012-(2022+) ...

NASA

hard X ray imaging <80 keV

Fig. 1. NuSTAR telescopes in deployed configuration

MeV Range Gamma-Ray Telescope Principles

Simple Detector (& Collimator)

(e.g. HEAO-C, SMM, CGRO-OSSE) Spatial Resolution (=Aperture) Defined Through Shield

Coded Mask & Detector Array

(e.g. SIGMA, INTEGRAL, SWIFT) Spatial Resolution Defined by Mask & Detector Elements Sizes

Compton Telescopes

(Coincidence-Setup of

Position-Sensitive Detectors)

(e.g. CGO-COMPTEL, MEGA, ACT, GRIPS, eASTROGAM) Spatial Resolution Defined by Detectors' Spatial Resolution

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg Nuclei in the Cosmos 2021 School, Sep 2021

Roland Diehl

MeV Range Gamma-Ray Telescope Imaging Principles

Compton Telescopes and Coded-Mask Telescopes

Achievable Sensitivity: ~10⁻⁵ ph cm⁻² s⁻¹, Angular Resolution \geq deg Nuclei in the Cosmos 2021 School, Sep 2021

Compton Scattering: Coincidence Experiments

Casting a Source Shadow: Coded Mask Telescopes

- ☆ A Semi-Transparent Mask Occults Part of the Position-Sensitive Gamma-Ray Detector Plane
- Recognition of the Mask Shadow in the Detectors' Signal -> "Imaging a Source"
 Telescope = Mask & Detector Hardware + Imaging Software
- 🛠 Masks
 - Uniformly Redundant Arrays
 - Adapted to Detector Spatial Resolution
 - Optimized for Larger Field of View
 - » Partially/Fully Coded FoV
- 🖈 Imaging
 - Correlation
 - Fourier-Domain Filtering

Nuclei in the Cosmos 2021 School, Sep 2021

ref. e.g.: Skinner

SPI on INTEGRAL

34

Ge Detectors in Space Telescopes

Dominance of instrumental background

SPI Ge detector spectra

Discriminating Background and Sky Signals

• Tracking the relative count rate ratios among detectors

Nuclei in the Cosmos 2021 School, Sep 2021

Gamma ray spectroscopy with SPI

Gamma-Ray Lines from Cosmic Radioactivity

Radioactive trace isotopes are by-products of nucleosynthesis reactions Released into circum-source ISM, we can observe gamma-ray afterglows:

Isotope	Mean Decay Time	Decay Chain	γ -Ray Energy [keV]	Detected Source	Source Type
⁷ Be	77 d	$^{7}\text{Be} \rightarrow ^{7}\text{Li}^{*}$	478	(none)	Novae
⁵⁶ Ni	8.8 d; 111 d	⁵⁶ Ni → ⁵⁶ Co* → ⁵⁶ Fe*+e*	158, 812; 847, 1238	SN2014J; SN1987A, SN1991T(?)	Supernovae
⁵⁷ Ni	390 d	⁵⁷ Co→ ⁵⁷ Fe*	122	SN1987A	Supernovae
²² Na	3.8 y	$^{22}Na \rightarrow ^{22}Ne^* + e^+$	1275	(none)	Novae
⁴⁴ Ti	85 y	⁴⁴ Ti→ ⁴⁴ Sc*→ ⁴⁴ Ca*+e*	78, 68; 1157	SNR Cas A	Supernovae
^{229/230} Th	~1.0 10 ⁵ y	^{229/230} Th →·····→ ²⁰⁶ Pb	352 6092615	(none)	Neutron Star Mergers, SNe
¹²⁶ Sn	3.3 10 ⁵ y	¹²⁶ Sn→ ¹²⁶ Sb*→ ¹²⁶ Te	666; 695; 87; 64	(none)	Neutron Star Mergers, SNe
²⁶ AI	1.04 10 ⁶ y	$^{26}\text{Al} \rightarrow ^{26}\text{Mg}^* + e^+$	1809	Massive-Star Groups Cyg, Ori	Stars, Novae Supernovae
⁶⁰ Fe	3.5 10 ⁶ у	$^{60}\text{Fe} \rightarrow {}^{60}\text{Co}^* \rightarrow {}^{60}\text{Ni}^*$	59, 1173, 1332	Galaxy (?)	Supernovae, Stars
e*	10 ⁵ 10 ⁷ y	$e^++e^- \rightarrow Ps \rightarrow \gamma\gamma$	511, <511	Galactic Bulge, Disk	Supernovae, Novae, Pulsars, Microquasars

• Only the most-plausible candidates per source type are listed

(abundance; decay time (weeks<τ<10⁸y) long enough to survive ejection/not too long to be bright)

Nuclei in the Cosmos 2021 School, Sep 2021

How do we learn about isotopes in the cosmos?

a few examples...

Science with Cosmic Isotopes

☆Trace the forms of cosmic matter

☆Understand the sources of new nuclei

SN1987A: multiple messengers exploited

• Witnessing the final core collapse of a massive star of mass 22 M_{\odot} in Feb 1987

Nuclei in the Cosmos 2021 School, Sep 2021

Cas A, a 360-year old SNR – X rays:

X-ray image surprise: Fe rich knots outside of Si, S \rightarrow overturn of material??

⁴⁴Ti radioactivity in Cas A: Locating the inner Ejecta

NuSTAR Imaging in hard X-rays (3-79 keV; ⁴⁴Ti lines at 68,78 keV) →

^C first mapping of radioactivity in a SNR

- Both ⁴⁴Ti lines detected clearly
- − line redshift 0.5 keV
 → 2000 km/s asymmetry
- ⁴⁴Ti flux consistent with earlier measurements
- Doppler broadening: (5350 \pm 1610) km s⁻¹
- Image differs from Fe!!

⁴⁴Ti → TRUE locations of ejecta from the inner supernova
Fe-line X-rays are biased from ionization of shocked plasma

"Rare" Core Collapse Supernovae as ⁴⁴Ca (=⁴⁴Ti) Sources?

Nuclei in the Cosmos 2021 School, Sep 2021

⁵⁶Ni radioactivity $\rightarrow \gamma$ -Rays, e⁺ \rightarrow leakage/deposit

SN2014J light evolution in the 847 keV ⁵⁶Co line

SN2014J data Jan – Jun 2014: ⁵⁶Co lines

☆ Doppler broadened ✓

→ Observe a structured and evolving spectrum

expected:
 gradual appearance
 of broadened ⁵⁶Co lines

[©] Diehl et al., A&A (2015)

SNIa and SN2014J: Early ⁵⁶Ni (τ~8.8d)

Spectra from the SN at ~20 days after explosion

Clear detections of the two strongest lines expected from ⁵⁶Ni

Nuclei in the Cosmos 2021 School, Sep 2021

Sources of Nucleosynthesis

• Our current inventory:

source	main products	frequency
core-collapse supernovae	Ni Fe Si Ca Ti U Th	10 ⁻³ y ⁻¹ galaxy ⁻¹
thermonuclear supernovae	Fe Mn Ca	10 ⁻⁴ y ⁻¹ galaxy ⁻¹
novae	F Na	30 y ⁻¹ galaxy ⁻¹
jet-driven/magnetic supernovae	Eu	10 ⁻⁶ y ⁻¹ galaxy ⁻¹
hypernovae	Zn	10 ⁻⁶ y ⁻¹ galaxy ⁻¹
neutron star collisions	La	10 ⁻⁹ y ⁻¹ galaxy ⁻¹
massive stars	O Ca Si Mg Al Fe	lifetime ~My100My, birth rate 1 y ⁻¹ galaxy ⁻¹
intermediate-mass stars	C Ba Pb	lifetime ~0.1-1 Gy, birth rate 1 y ⁻¹ galaxy ⁻¹
low-mass stars	He	lifetime ~>10 Gy, birth rate 1 y ⁻¹ galaxy ⁻¹

Science with Cosmic Isotopes

☆Trace the forms of cosmic matter

☆Understand the sources of new nuclei

spreading of new nuclei across time & space...

Stellar Feedback

• Astrophysical processes:

Marinacci+2019

Star formation and winds

- Variant of Springel & Hernquist (2003)
- Cold dense gas stabilized by an ISM equation of state
- Winds are phenomenologically introduced, with an energy given as a fixed fraction of the supernova energy
- The wind velocity is variable, the mass flux follows for energy-driven winds
- · Fiducial model scales wind with local dark matter velocity dispersion
- Winds are launched[®]outside of star-forming gas, and metal-loading can be reduced if desired

Modeling Compositional Evolution

100 Myrs in a kpc³ of a galaxy:

courtesy Miguel de Avillez

☆ Changes in the forms of cosmic matter:

stars and gas flows:

 $m = m_{\text{gas}} + m_{\text{stars}} + m_{\text{infall}} + m_{\text{outflow}} \qquad m_{\text{stars}} = m_{1} + m_{c}$ $\frac{dm_{G}}{dt} = -\Psi + E + [f - o]$

 $\Psi(t)$ is the Star Formation Rate (SFR) and E(t) the *Rate of mass ejection* **G** gas ejected from stars:

$$E(t) = \int_{M_t}^{M_U} (M - C_M) \, \Psi(t - \tau_M) \, \Phi(M) \, dM$$

newly-contributed ashes from nucleosynthesis:

The mass of element/isotope *i* in the gas is $m_i = m_G X_i$

$$\frac{d(m_G X_i)}{dt} = -\Psi X_i + E_i + [f X_{i,f} - o X_{i,o}]$$
$$E_i(t) = \int_{M_t}^{M_U} Y_i(M) \Psi(t - \tau_M) \Phi(M) dM$$

Ingredients:

Sources: How fast do they evolve to return (new) gas? the star of mass M, created at the time $t - \tau_M$, dies at time t

Sources: How much of species i do they eject (and/or bury)?

 $Y_i(M)$ the mass ejected in the form of that element by the star of mass M

… (locations and environments of star formation, gas flows, …)

Two examples: Nuclear reactions to produce ²⁶Al, ⁶⁰Fe

• The Na-Al-Mg cycle: p captures (H burning, +...)

²⁶Al Nucleosynthesis: Example of a Cosmic Reaction Network, Common for Intermediate-Mass Isotopes

nucleosynthesis

 Neutron capture on Fe in massive-star shells

☆ What are the n capture rates?☆ What are the β decay lifetimes?

Roland Diehl

²⁶Al γ -rays and the galaxy-wide massive star census

Ejecta and cavities blown by stars & supernovae

ISM is driven by stars and supernovae \rightarrow Ejecta commonly in (super-)bubbles

How massive-star ejecta are spread out...

Superbubbles are blown into lower-density regions

⁶⁰Fe from a nearby supernova on Earth

The Sun is located inside a hot cavity (Local Bubble & Loop-1) SN explosions within \rightarrow ejecta flows reach the Solar System

Cosmic Rays: From sources to direct observation

60

Messengers from cosmic nucleosynthesis

messenger	message		
photons (optical/UV)	identify atomic species		
meteorites	discover variety of elements & isotopes		
neutrinos	proof of gravitational collapse proof of H burning reactions		
photons (optical; time domain)	oscillation modes of stars		
photons (gamma rays)	identify freshly-produced isotopes		
photons (X rays)	identify highly-ionised atoms (hot plasma)		
sediments on Earth & Moon	identify ejecta cloud from recent nearby SNe		
presolar grains	identify isotopic signatures of nucleosynthesis processes in AGB, SNe,		
cosmic rays	verify fresh SN ejecta within nearby CR-propagation distances		

Nuclei in the Cosmos 2021 School, Sep 2021

Cosmic Nucleosynthesis Overview

Observing Cosmic Nuclei - Status Summary

Stellar spectroscopy / galactic archeology is in an era of precision
 large surveys >10⁶ sources with spectra; metallicity fully covered
 better stellar ages allows evolutionary-model test

☆ Specific sources and their understanding are a challenge

- Models for stars and supernovae are not (yet?) fundamental 'physics'
 - − SNIa diversity (⁵⁶Ni and how it reveals its radiation) → sub-Chandra models?
 - ccSupernovae are fundamentally 3D/asymmetric (⁴⁴Ti ; jetSNe, HNe)
 - rare events (e.g. kilonovae/NSMs) are multi-variate; astronomy?
- Cycling of cosmic gas through sources and galaxies is a challenge
 source environments are a variety (dense clouds.... cavities)
 evolutionary time delays and locations are poorly known

Varied messengers complement each other with essential diagnostics
 Radioactivity provides a unique / different view on cosmic isotopes (γ rays!)

- particle measurements (sediments/meteorites/stardust/CRs) are essential
- new astronomies contribute unique aspects (seismology, gravity waves)

