## Nuclear Astrophysics Experiments Deep Underground at LUNA





Marialuisa Aliotta



School of Physics and Astronomy - University of Edinburgh, UK

XVI Nuclei in the Cosmos School – September 2021

#### M Aliotta

### Lecture 1

- brief overview of Nuclear Astrophysics
- thermonuclear reactions in stars
  - non-resonant and resonant reactions
  - reaction rates, cross sections and yields
- stellar reactions in the lab
  - challenges and requirements
  - why underground

### Lecture 2

- the LUNA laboratory: past successes and recent studies
  - gamma-ray, charged-particle, and neutron- detection
- future opportunities

### **Nuclear Astrophysics**

- Where do all chemical elements come from?
- How do stars and galaxies form and evolve?

## Nuclear Physics plays a key role: intimate connection between MICRO COSMOS and MACRO COSMOS



### M. Aliotta The Messengers of the Universe Crab Nebula SN 1054 electromagnetic emissions radio, microwave, infrared, optical, X-ray, $\gamma$ -ray 06.5 B0 B6 A1 A5 F0 F5 G0 G5 K0 K5 M0 M5 F4 metal poor M4.5 emission B1 emission direct messengers

neutrinos, cosmic rays, meteorites, lunar samples, ...









### gravitational waves



### (Solar) Abundance Distribution

M Aliotta





#### Data sources:

Earth, Moon, meteorites, cosmic rays, solar & stellar spectra...

#### Features:

- 12 orders-of-magnitude span
- H ~ 75%, He ~ 23%
- C → U ~ 2% ("metals")
- D, Li, Be, B under-abundant
- exponential decrease up to Fe
- nearly flat distribution beyond Fe





![](_page_7_Figure_0.jpeg)

#### massive stars contribute to chemical evolution of the Universe

**low-mass stars** live longer  $\rightarrow$  important for **evolution of life** 

## **Key Open Questions**

- Big Bang Nucleosynthesis: Li problem and the D abundance
- Core metallicity of the Sun
- Nucleosynthesis in AGB stars and galactical chemical evolution
- Fate of massive stars: supernovae or white dwarfs?
- Explosive scenarios: X-ray bursts, novae, SN type la
- Pre-solar grains composition
- Origin of Heavy Elements
- Astrophysical site(s) for the r-process
- ...

#### M. Aliotta

#### Nuclear Astrophysics: A Truly Interdisciplinary Effort

### **Astrophysics**

Stellar evolutionary codes nucleosynthesis calculations astronomical observations

![](_page_9_Picture_4.jpeg)

### **Nuclear Physics**

experimental and theoretical Inputs stable and exotic nuclei

![](_page_9_Picture_7.jpeg)

### **Plasma Physics**

degenerate matter electron screening equation of state

### **Atomic Physics**

radiation-matter interaction energy losses, stopping powers spectral lines materials and detectors

![](_page_9_Picture_12.jpeg)

## **Thermonuclear Reactions in Stars**

![](_page_10_Picture_1.jpeg)

Consider reaction:  $1 + 2 \rightarrow 3 + 4$   $Q_{12} > 0$  (  $\leftarrow$  known from atomic mass tables)

 $\begin{array}{rl} \mbox{Reaction cross section } \sigma & \Rightarrow \mbox{ probability for a reaction to occur} \\ \mbox{Dimension: area} & \mbox{Unit: barn (b) = 10^{-24} \ cm^2} \end{array}$ 

- In general: not possible to determine reaction cross section from first principles
- However: 1. cross sections depend on nature of force involved

| Reaction                             | Force           | σ (barn)         | E <sub>proj</sub> (MeV) |
|--------------------------------------|-----------------|------------------|-------------------------|
| <sup>15</sup> N(p,α) <sup>12</sup> C | strong          | 0.5              | 2.0                     |
| <sup>3</sup> He(α,γ) <sup>7</sup> Be | electromagnetic | 10 <sup>-6</sup> | 2.0                     |
| p(p,e⁺v)d                            | weak            | 10-20            | 2.0                     |

2. cross sections are energy (i.e. velocity) dependent

Reaction rate:

 $r = N_1 N_2 v \sigma(v)$ 

In stellar plasma: velocity of particles varies over wide range Reaction rate per particle pair:  $\langle \sigma v \rangle_{12} = \int_{0}^{\infty} v \sigma(v) \phi(v) dv \quad \phi(v)$  velocity distribution

Quiescent stellar burning:

non-relativistic, non-degenerate gas in thermodynamic equilibrium at temperature T

![](_page_12_Figure_4.jpeg)

![](_page_13_Figure_1.jpeg)

### **Reaction Mechanisms**

I. direct (non-resonant) reactions II. resonant reactions

## **Cross Section for Non-Resonant Reactions**

- reactions with charged particles
- reactions with neutrons (see Lectures by Prof Artemis Spyrou)

#### M Aliotta **Direct (non-resonant) Reactions**

#### one-step process

direct transition into a bound state

example:

radiative capture  $A(x,\gamma)B$ 

![](_page_16_Figure_5.jpeg)

 $\sigma_{\gamma} \propto \left| \left\langle \mathbf{B} \middle| \mathbf{H}_{\gamma} \middle| \mathbf{A} + \mathbf{x} \right\rangle \right|^2$   $\mathbf{H}_{\gamma}$  = electromagnetic operator describing the transition

reaction cross section proportional to single matrix element

can occur at all projectile energies

smooth energy dependence of cross section

other direct processes: stripping, pickup, charge exchange, Coulomb excitation

![](_page_17_Figure_0.jpeg)

non-zero probability of tunnelling through Coulomb barrier at energies  $E \ll V_{coul}$  assuming full ion charges and zero orbital angular momentum:

![](_page_18_Figure_2.jpeg)

determines exponential drop in abundance curve!

![](_page_19_Figure_0.jpeg)

Above relation defines ASTROPHYSICAL S(E)-FACTOR (units: keV barn, MeV barn, ...)

N.B.

If angular momentum is non zero  $\Rightarrow \text{ centrifugal barrier } V_{\ell} = \frac{\ell(\ell+1)\hbar^2}{2\mu r^2} \quad \text{must also be taken into account}$ 

reaction rate: 
$$\langle \sigma v \rangle = \int \sigma(v) \phi(v) v dv = \int \sigma(E) exp(-E/kT) E dE$$

and substituting for 
$$\sigma$$
:  $\langle \sigma v \rangle \propto \int S(E) exp \left( -\frac{E}{kT} - \frac{b}{\sqrt{E}} \right) dE$ 

maximum reaction rate at E<sub>0</sub>:  $\frac{d}{dE} \left[ exp\left(-\frac{E}{kT} - \frac{b}{\sqrt{E}}\right) \right] = 0$   $E_0 = (bkT/2)^{2/3} = (Z_1^2 Z_2^2 \mu T_9^2)^{1/3} \text{ MeV}$   $\Delta E = \frac{4}{\sqrt{3}} \sqrt{E_0 kT} = 0.237 (Z_1^2 Z_2^2 A)^{1/6} T_9^{5/6} \text{ MeV}$  GAMOW Peak

![](_page_20_Figure_4.jpeg)

![](_page_21_Figure_0.jpeg)

Examples:  $T \sim 15 \times 10^6 \text{ K}$  (T<sub>6</sub> = 15)

| reaction                          | Coulomb<br>barrier<br>(MeV) | E <sub>0</sub><br>(keV) | area under Gamow<br>peak ~ <σv> |
|-----------------------------------|-----------------------------|-------------------------|---------------------------------|
| p + p                             | 0.55                        | 5.9                     | 7.0x10 <sup>-6</sup>            |
| α + <sup>12</sup> C               | 3.43                        | 56                      | 5.9x10 <sup>-56</sup>           |
| <sup>16</sup> O + <sup>16</sup> O | 14.07                       | 237                     | 2.5x10 <sup>-237</sup>          |

![](_page_21_Figure_3.jpeg)

## **Electron Screening**

![](_page_23_Figure_0.jpeg)

## **Cross Section for Resonant Reactions**

### reactions with either neutrons or charged particles

#### M Aliotta Resonant Reactions

two-step process

example: resonant radiative capture  $A(x, \gamma)B$ 

![](_page_25_Figure_3.jpeg)

- reaction cross section proportional to two matrix elements
- only occurs at energies E<sub>cm</sub> ~ E<sub>r</sub> Q
- strong energy dependence of cross section

N. B. energy in entrance channel (Q+E<sub>cm</sub>) has to match excitation energy E<sub>r</sub> of resonant state, however all excited states have a width  $\Rightarrow$  there is always some cross section through tails

![](_page_26_Figure_0.jpeg)

N. B. energy in entrance channel  $(S_x+E_{cm})$  has to match excitation energy  $E_r$  of resonant state, however all excited states have a width  $\Rightarrow$  there is always some cross section through tails

#### M Aliotta Breit-Wigner Cross Section

for a single isolated resonance:

resonant cross section given by Breit-Wigner expression

![](_page_27_Figure_3.jpeg)

what about penetrability considerations?  $\Rightarrow$  look for energy dependence in partial widths!

partial widths are NOT constant but energy dependent!

![](_page_28_Figure_0.jpeg)

reaction rate:  $\langle \sigma v \rangle = \int \sigma(v) \phi(v) v dv = \int \sigma(E) \exp(-E/kT) E dE$ here Breit-Wigner cross section  $\sigma(E) = \pi \lambda^2 \frac{2J+1}{(2J_1+1)(2J_T+1)} \frac{\Gamma_1 \Gamma_2}{(E-E_r)^2 + (\Gamma/2)^2}$ 

integrate over appropriate energy region

if compound nucleus has an exited state (or its wing) in this energy range

 $\Rightarrow$  RESONANT contribution to reaction rate (if allowed by selection rules)

typically:

- resonant contributions dominate reaction rate
- reaction rate critically depends on resonant state properties

## **Reaction Rates**

- I. Narrow Resonances
- II. Broad Resonances
- III. Sub-threshold resonances

I. Narrow resonances

 $\Gamma \ll E_{R}$ 

![](_page_31_Figure_2.jpeg)

- resonance must be **near** relevant energy range  $\Delta E_0$  to contribute to stellar rate
- MB distribution assumed constant over resonance region
- partial widths also constant, i.e.  $\Gamma_i(E) \cong \Gamma_i(E_R)$

reaction rate for a single narrow resonance

exponential dependence on energy means:

- rate strongly dominated by low-energy resonances ( $E_R \rightarrow kT$ ) if any
- small uncertainties in E<sub>R</sub> (even a few keV) imply large uncertainties in reaction rate

$$\left\langle \sigma v \right\rangle_{12} = \left(\frac{2\pi}{\mu_{12}kT}\right)^{3/2} \hbar^2 \left(\omega\gamma\right)_R \exp\left(-\frac{E_R}{kT}\right)$$

$$\langle \sigma v \rangle_{12} = \left(\frac{2\pi}{\mu_{12}kT}\right)^{3/2} \hbar^2 (\omega \gamma)_R \exp\left(-\frac{E_R}{kT}\right)$$

rate entirely determined by "resonance strength"  $\omega\gamma$  and energy of the resonance  $E_R$ 

#### resonance strength

(= integrated cross section over resonant region)

$$\omega \gamma = \frac{2J+1}{(2J_1+1)(2J_T+1)} \frac{\Gamma_1 \Gamma_2}{\Gamma}$$

( $\Gamma_{\rm i}$  values at resonant energies)

$$\Gamma = \Gamma_1 + \Gamma_2$$

often:

reaction rate is determined by the smaller width !

experimental info needed:

- partial widths  $\Gamma_i$
- spin J
- energy E<sub>R</sub>

note: for many unstable nuclei most of these

parameters are UNKNOWN!

![](_page_33_Figure_1.jpeg)

resonant strength dominated by particle width

 $ωγ = ωΓ_α$  (typically for  $E_R \le 0.5$  MeV)

- strong energy dependence through Coulomb barrier penetration
- only resonances in Gamow window are relevant to reaction rate

resonant strength dominated by gamma width  $\omega\gamma = \omega\Gamma_{\gamma}$  (typically for E<sub>R</sub> > 0.5 MeV)

- lowest energies dominate rate because of exp(-E<sub>R</sub>/kT) term
- no Gamow peak exists!
- effect most important at high temperatures

## **Reaction Rates**

- I. Narrow Resonances
- II. Broad Resonances
- III. Sub-threshold resonances

![](_page_35_Figure_0.jpeg)

assume:  $\Gamma_2 = \text{const}$ ,  $\Gamma = \text{const}$  and use simplified expression

as

$$\sigma(E) = \pi \lambda^2 \Gamma_1(E) \omega \frac{\Gamma_2}{(E - E_R)^2 + (\Gamma/2)^2}$$
same energy dependence for E << E<sub>R</sub> very weak as in direct process energy dependence

N.B. overlapping broad resonances of same  $J^{\pi} \rightarrow$  interference effects

## **Reaction Rates**

- I. Narrow Resonances
- II. Broad Resonances
- III. Sub-threshold resonances

III. Sub-threshold resonances

any exited state has a finite width

#### $\Gamma \sim h/\tau$

high energy wing can extend above particle threshold

### ¥

cross section can be entirely dominated by contribution of sub-threshold state(s) Examples:  ${}^{20}Ne(p,\gamma){}^{21}Na$ ,  ${}^{12}C(\alpha,\gamma){}^{16}O$ 

![](_page_37_Figure_7.jpeg)

![](_page_37_Figure_8.jpeg)

## **Total Stellar Reaction Rates**

#### M Aliotta Stellar Reactions Rates

- direct (non-resonant) transitions to the various bound states
- all narrow resonances in the relevant energy window
- broad resonances (tails) e.g. from higher lying resonances
- any interference term

![](_page_39_Figure_5.jpeg)

## Experimental Challenges and Requirements of Direct Measurements

![](_page_40_Picture_1.jpeg)

Gamow peak: energy window where information on nuclear processes is needed

BUT:  $kT \ll E_0 \ll E_{coul} \implies 10^{-18} \text{ barn } \ll \sigma < 10^{-9} \text{ barn } \implies Major experimental difficulties}$ 

**Procedure:** measure  $\sigma(E)$  over wide energy, then extrapolate down to  $E_0!$ 

![](_page_41_Figure_4.jpeg)

CROSS SECTION

S-FACTOR

Part IV Experimental Nuclear Astrophysics

Example:  ${}^{3}\text{He}(\alpha,\gamma){}^{7}\text{Be}$ 

![](_page_42_Figure_2.jpeg)

Data **EXTRAPOLATION** down to astrophysical energies **REQUIRED**!

## Yield Measurements and Cross Sections

#### M Aliotta Experimental Nuclear Astrophysics

Yield =  $\frac{\text{total number of reactions}}{\text{total number of incident particles}} = \sigma N_t d$ 

yield vs bombarding energy = yield curve or excitation function

![](_page_44_Figure_3.jpeg)

for non-resonant reactions or for broad resonances

$$Y(\mathsf{E}_{0}) = \int_{\mathsf{E}_{0}-\Delta\mathsf{E}}^{\mathsf{E}_{0}} \frac{\sigma(\mathsf{E})}{\varepsilon(\mathsf{E})} \mathsf{d}\mathsf{E} = \frac{\sigma(\mathsf{E}_{\mathsf{eff}})}{\varepsilon(\mathsf{E}_{0})} \Delta\mathsf{E}(\mathsf{E}_{0})$$

cross section and stopping power  $\epsilon(E)$  are almost constant within small energy region

E<sub>eff</sub> = energy at which 50% of total yield is obtained

#### M Aliotta Experimental Nuclear Astrophysics

for **resonant reactions:** yield depends strongly on bombarding energy and target thickness

#### *thin* target thickness $\Delta E \ll \Gamma$

yield curve resembles cross section curve

- max yield at E<sub>R</sub>
- FWHM  $\approx \Gamma$  of resonant state

#### *thick* target thickness $\Delta E >> \Gamma$

#### yield approaches flat plateau

- max yield at  $E_R + \Delta E/2$
- FWHM  $\approx \Delta E$
- $\Gamma$  = energy difference for Y<sub>75%</sub>-Y<sub>25%</sub>

$$\Delta E \rightarrow \infty$$
  $Y_{max}(\infty) = \frac{\lambda^2}{2} \frac{m_p + m_T}{m_T} \frac{1}{\varepsilon} \omega \gamma$ 

![](_page_45_Figure_12.jpeg)

# Equipment and General Requirements

#### M Aliotta Experimental Nuclear Astrophysics

### Schematic Layout for Nuclear (Astro-)Physics Experiments

#### BEAMS

![](_page_47_Figure_3.jpeg)

In my next Lecture:

- how to mitigate experimental challenges
- LUNA: the first underground laboratory for Nuclear Astrophysics studies
- past achievements and recent results
- future perspectives

![](_page_49_Picture_1.jpeg)