SN neutrino-nucleosynthesis, Laboratory for fundamental physics (1)

Motohiko Kusakabe (kusakabe@buaa.edu.cn) (School of Physics, Beihang University)

1. Neutrino properties

2. Neutrino oscillations in vacuum, constant electron density, and stars

Reference on neutrino oscillation: M. Fukugita & T. Yanagida ``Physics of Neutrinos and Applications to Astrophysics"

The 16th Nuclei in Cosmos School

2021/9/16

1. Neutrino properties

1. Standard model of particle physics

>Excepting the very weak gravity, 3 forces operate to elementary particles.

Wikipedia contributors. Standard Model [Internet]. Wikipedia, The Free Encyclopedia; 2014 Jan 27, 14:33 UTC [cited 2014 Feb 18]. Available from: <u>http://en.wikipedia.org/w/index.php?title=Standard_Model&oldid=592640485</u>.

2. neutrino

Elementary particle, spin 1/2

>Three flavors, only left-handed v's and right-handed $\overline{v's}$ >Weak and gravitational interactions

Wikipedia contributors. Standard Model [Internet]. Wikipedia, The Free Encyclopedia; 2014 Jan 27, 14:33 UTC [cited 2014 Feb 18]. Available from:

http://en.wikipedia.org/w/index.php?title=Standard_Model&oldid=592640485.

3. Gauge theory

- > Interaction of fermions (spin $\frac{1}{2}$) and a mediator boson (spin 1).
- Multiple groups that include gauge theories
 - ✓ $SU(2)_L \times U(1)_Y$: electro-weak interaction
 - ✓ SU(3): strong interaction

four interactions in the universe

interaction	boson		Phenomena
Electromagnetic	Photon	γ	Almost all phenomena around us including radiative nuclear reactions
Weak	Weak bosons	W [±] , Z ⁰	β -decay, ν scattering,
Strong	Gluon	g	Operating only to quarks
Gravitational	Graviton	G	Attractions between masses

4. Weak interaction (1)

- >β-decay, scattering
- >V-A interaction; Mediated by weak bosons (W^{\pm} , Z^{0})
- ➤Masses: m_W =80.4 GeV/c², m_Z =91.2 GeV/c²
- ➢Range is very short ~1/m_W

➢if E <m_W, interaction is weak (scattering cross section ∝G_F² =1/m_W⁴) ➢if E >m_W, interaction is as strong as electromagnetic interaction (scattering cross section ∝g⁴)

Only <u>left-handed</u> particles & <u>right-handed</u> antiparticles interact

4. Weak interaction (2)

- ➢ Mediator particle: W[±] and Z⁰ bosons
- > Coupling to weak charge (C_V, C_A)
- > Coupling constant =g = $G_F^{1/2}$ G_F^2 =1.166 x 10⁻⁵ GeV⁻²
- Short-range force: V ~exp(-m_Wr)/r
- > Example:
 - ✓ Pion decay: $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$
 - ✓ Muon decay: $\mu^{-} \rightarrow e^{-} + \overline{v_{e}} + v_{\mu}$

 v_{e}

VV

5. neutrino reactions

▶2 gauge bosons (W[±] & Z⁰)

- \checkmark Neutral current: no flavor change (u \leftrightarrow u , e \leftrightarrow e)
- $\checkmark~$ Charged current: flavors change (u \leftrightarrow d , e \leftrightarrow $v_{e})$

(i) Neutral current

(ii) Charged current

initial and final states

Weak reaction for Conversion of $p \leftrightarrow n$

6. Weak reactions of nuclei

≻Electron capture of proton
≻Neutron β-decay
≻Inverse reactions

➤General weak reactions of nuclei

 $\begin{array}{ll} (Z,A) + e^- \rightarrow (Z-1,A) + \nu_e & \text{e-capture} \\ (Z,A) + e^+ \rightarrow (Z+1,A) + \bar{\nu}_e & \text{positron capture} \\ (Z,A) \rightarrow (Z+1,A) + e^- + \bar{\nu}_e & \beta\text{-decay} \\ (Z,A) \rightarrow (Z-1,A) + e^+ + \nu_e & \beta^+\text{-decay} \\ \nu_e + (Z-1,A) \rightarrow e^- + (Z,A) & \text{CC ν reaction} \\ \bar{\nu}_e + (Z+1,A) \rightarrow e^+ + (Z,A) & \text{CC $\overline{\nu}$ reaction} \end{array}$

7. ν -mass

Extremely light

- ✓ Cosmological bound: $\sum m_i < 0.152 \text{ eV}$
- \checkmark v-oscillation experiments:

(2019 Review of Particle Physics Particle Data Group)

 $\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2$ $\Delta m_{32}^2 = (-2.55 \pm 0.04) \times 10^{-3} \text{ eV}^2$ (for inverted hierarchy), or

 $\Delta m_{32}^2 = (2.444 \pm 0.034) \times 10^{-3} \text{ eV}^2$ (for normal hierarchy)

	Quarks			Leptons			
Gener ation	Name	Symbol	M (<u>MeV/c</u> ²)	Name	Symbol	M (<u>MeV/c</u> ²)	
1	<u>up</u>	u	2.16 ^{+0.49} -0.26	Electron	e⁻	0.511	
	<u>down</u>	d	4.67 ^{+0.48} _{-0.17}	Electron neutrino	V _e	< 2 × 10 ⁻⁶	
2	<u>charm</u>	С	1270 ± 20	<u>Muon</u>	μ-	105.7	
	<u>strang</u> <u>e</u>	S	93 ⁺¹¹ ₋₅	<u>Muon</u> <u>neutrino</u>	v_{μ}	< 0.19	
3	top	t	173,100 ±600	<u>Tau</u>	T_	1,776.86 ±0.12	
	bottom	b	4,180 ⁺³⁰ -20	Tau neutrino	V _T	< 18.2	

8. History of neutrinos

No electromagnetic and strong interaction
 hard to detect

> postulated by Pauli (1930) for energy conservation at the beta decay
 > Taken into account in the beta decay theory (Fermi 1934)
 n→p⁺+e⁻+v_e

Cowan, Reines, Harrison, Kruse, & McGuire (1956) found the neutrino

$$v_e$$
 +p⁺→n+e⁺
e⁺+e⁻→γ+γ
¹⁰⁸Cd +n →¹⁰⁹Cd+γ Detection of photons

 \blacktriangleright Homestake experiment (late 1960s) detected ν_e emitted from nuclear fusions in the Sun

$$v_e + {}^{37}CI \rightarrow {}^{37}Ar + e^{-1}$$

→ v_e flux is smaller by a factor of ~3 than theoretical estimate →Solar v problem

8. History of neutrinos

≻Neutrinos oscillate →flavor changes →Solar v problem was solved

(SK web page: http://www-sk.icrr.u-tokyo.ac.jp/sk/physics/atmnu-e.html)

Cosmic ray reactions in atmosphere generates v"s

v's from different directions ←different travel lengths

 ν_{μ} oscillates into another type

9. Importance of weak interactions

Weak interaction is weaker than electromagnetic and strong interactions
 In the early universe, the weak interaction becomes unimportant firstly.

10. Big bang nucleosynthesis (BBN)

11. Astrophysical sites of neutrino production

- Cosmic background v's
 →very abundant
- \checkmark Here is cosmic microwave background radiation, a remnant of hot big bang

✓ Similarly, background v's exist

$$n_v = 3\frac{4}{11}\frac{3}{4}n_y = \frac{9}{11}n_y$$
 n_v=336.0 cm⁻³

- \checkmark The cosmic average baryon # density is about 6 × 10⁻¹⁰ times as much as n_v
- Note that the baryon # density in astronomical bodies such as the Galaxy, the Sun and the Earth is enhanced from the average value

11. Astrophysical sites of neutrino production2) Atmosphere

3) Sun (and other starts)

Bahcall et al., ApJL, 621, L85 (2005)

Wikipedia, ID: 845279810 https://en.wikipedia.org/w/index.php?title=Proton%E2%80%93proton_chain_reaction&oldid=845279810

4) Core collapse supernovae

Weaver et al., "The Dawn of a New Era for Supernova 1987a" NASA, 25 Feb. 2017. https://www.nasa.gov/feature/goddard/2017/the-dawn-of-a-new-era-for-supernova-1987a.

11. Astrophysical sites of neutrino production

- 4) Core collapse supernovae
- Neutrino burst was detected at the time of SN1987A

Hirata et al., PRL, 58, 1490 (1987)

Weaver et al., "The Dawn of a New Era for Supernova 1987a" NASA, 25 Feb. 2017. https://www.nasa.gov/feature/goddard/2017/the-dawn-of-a-new-era-for-supernova-1987a.

12. Supernovae (SNe)

>Nova: transient luminous object (L < O(10⁵) L_{\odot} ~10³⁸ erg/s) >Supernova: much brighter than novae

 $L \sim 10^{43} \text{ erg/s}$

Hot gas (Chandra, X-ray)

"Mini Supernova" Explosion Could Have Big Impact' NASA, Mar. 13, 2015. https://www.nasa.gov/mission_pages/chandra/mini-supernova-explosion-could-have-big-impact.html.

13. SN classification

>Type I: No absorption lines of H in the spectrum

- →subclass (spectral types)
 - ✓ Ia: Si II absorption line
 ✓ Thermonuclear explosion
 - ✓ Ib: He I absorption line
 - ✓ Ic: no Si & He absorption lines

➤Type II: Absorption lines of H (more frequent than Type I)

- \rightarrow subclass (light curves or luminosity evolution)
 - ✓ IIP: plateau light curves
 - ✓ IIL: linear decrease of magnitude

Thermonuclear explosion

. . .

Core collapse

14. v emission in core-collapse SNe (1)

Gravitational collapse of massive star (M_{ZAMS} >10 M_{\odot}) >H, He, C, O, Si burnings

 \rightarrow Fe core: the most strongly bound nuclide

>M_{Fe}~M_{ch}~1.4M_☉: collapse
 > Photodisintegration of ⁵⁶Fe at T₉=T/(10⁹K) > 5
 > Nuclear matter density → collapse stops
 > Bounce → shock propagates outward
 > v energy is absorbed by gas → SN

He C,O O,Ne,Mg O,Si Fe

14. v emission in core-collapse SNe (2)

- Core-collapse SNe are important producers of neutrinos
- ✓ Fe core with the mass M~1.4M_☉ collapses to a neutron star (NS)
- ✓ Gravitational potential energy (3 × 10⁵³ erg ~ 2 × 10⁵⁹ MeV) is released, and escape from the NS as neutrinos.

1 erg =624.151 GeV

✓ The SN is composed of n, p, nuclei, e[±], v
 dense and hot → frequent scatterings
 but v's can the most easily escape because of weakest interaction.

$$N_{\nu} \sim \frac{2 \times 10^{59} \text{ MeV}}{10 \text{ MeV}} = 10^{58}$$

- \checkmark Huge number of neutrinos are emitted per 1 SN.
- ✓ These neutrinos scatter with matters → explosion occurs.

15. Solar abundance

2. Neutrino oscillations

1. Introduction

Mass eigenstates are different from eigenstates of weak interaction (flavors)
 Wave functions propagates in mass eigenstates.

 \rightarrow flavor can change during propagation.

Cabibbo-Kobayashi-Maskawa (CKM) matrix (1963, 1973, Nobel prize in 2008)

s quark as well as d couples to u.

$$egin{bmatrix} d' \ s' \ b' \end{bmatrix} = egin{bmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{bmatrix} egin{bmatrix} d \ s \ b \end{bmatrix}.$$

Weak eigenstates

Mass eigenstates

Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix (1962)

$$egin{bmatrix}
u_e \\
u_\mu \\
u_ au \end{bmatrix} = egin{bmatrix} U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{ au 1} & U_{ au 2} & U_{ au 3} \end{bmatrix} egin{bmatrix}
u_1 \\
u_2 \\
u_3 \end{bmatrix}.$$

Weak eigenstates

Mass eigenstates

2. v oscillation in vacuum (1)

➢Oscillation of 2-flavor neutrinos in vacuum

✓ Neutrino with flavor α is produced at t =0

$$|\nu^{\alpha}\rangle_{t=0} = \sum_{i} U_{\alpha i} |\nu'^{i}\rangle \qquad |\nu^{e}\rangle_{t=0} = \cos\theta |\nu'^{1}\rangle + \sin\theta |\nu'^{2}\rangle$$

 \checkmark It propagates, and at time t it becomes

 $|\nu^{\alpha}\rangle_{t} = \sum_{i} U_{\alpha i} e^{-iE_{i}t} |\nu'^{i}\rangle \quad (1) \quad |\nu^{e}\rangle_{t} = \cos\theta e^{-iE_{1}t} |\nu'^{1}\rangle + \sin\theta e^{-iE_{2}t} |\nu'^{2}\rangle$

✓ Amplitude for transition to the state $|\nu^{\beta}\rangle$

$$\left\langle \nu^{\beta} \left| \nu^{\alpha} \right\rangle_{t} = \sum_{i} U_{\alpha i} (U^{\dagger})_{i\beta} e^{-iE_{i}t} \left\langle \nu'^{i} \left| \nu'^{i} \right\rangle = \sum_{i} U_{\alpha i} (U^{\dagger})_{i\beta} e^{-iE_{i}t} \right\rangle_{i\beta} \left\langle \nu'^{i} \left| \nu'^{i} \right\rangle = \sum_{i} U_{\alpha i} (U^{\dagger})_{i\beta} e^{-iE_{i}t} \left\langle \nu'^{i} \left| \nu'^{i} \right\rangle \right\rangle_{i\beta} \left\langle \nu'^{i} \left| \nu'^{i} \right\rangle$$

✓ Using the ultra-relativistic approximation

$$E_i = \sqrt{p^2 + m_i^2} \simeq p + \frac{m_i^2}{2p} \simeq p + \frac{m_i^2}{2E}$$

 \checkmark (1) is transformed

$$|\nu^{\alpha}\rangle_{t} = \sum_{i} U_{\alpha i} e^{-iE_{i}t} (U^{\dagger})_{i\beta} |\nu^{\beta}\rangle \simeq e^{-ipt} U \begin{bmatrix} e^{-im_{1}^{2}t/2E} & 0\\ 0 & e^{-im_{2}^{2}t/2E} \end{bmatrix} U^{\dagger} |\nu^{\beta}\rangle \quad (2)$$

2. v oscillation in vacuum (2)

Oscillation of 2-flavor neutrinos in vacuum

$$|\nu^{\alpha}\rangle_{t} = \sum_{i} U_{\alpha i} e^{-iE_{i}t} (U^{\dagger})_{i\beta} |\nu^{\beta}\rangle \simeq e^{-ipt} U \begin{bmatrix} e^{-im_{1}^{2}t/2E} & 0\\ 0 & e^{-im_{2}^{2}t/2E} \end{bmatrix} U^{\dagger} |\nu^{\beta}\rangle \quad (2)$$

✓ Using a mass matrix satisfying

$$m = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix} = U^* \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} U^{\dagger}$$

$$m_{\text{diag}}^2 = \begin{pmatrix} m_1^2 & 0\\ 0 & m_2^2 \end{pmatrix} = U^{\dagger} m^{\dagger} m U$$

 $\checkmark\,$ The neutrino wave function is

$$|\nu^{\alpha}\rangle_{t} \simeq e^{-ipt} [e^{-im^{\dagger}mt/2E}]_{\alpha\beta} |\nu^{\beta}\rangle \quad (\textbf{3})$$

✓ Then, $|\nu^{\alpha}\rangle_t$ is a solution of the Schrödinger Eq.

$$i\frac{d}{dt}|\nu^{\alpha}\rangle_{t} \simeq \frac{m^{\dagger}m}{2E}|\nu^{\alpha}\rangle$$
 (4)

✓ Here the common phase factor e^{-ipt} was dropped.

2. v oscillation in vacuum (3)

➢Oscillation of 2-flavor neutrinos in vacuum

 $\checkmark\,$ Schrödinger Eq. for v

$$i\frac{d}{dt}|\nu^{\alpha}\rangle_{t} \simeq \frac{m^{\dagger}m}{2E}|\nu^{\alpha}\rangle$$
 (4)

 \checkmark We can take the unitary matrix for mixing

$$U = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$
$$m^{\dagger}m = Um_{\text{diag}}^{2}U^{\dagger} = \frac{m_{1}^{2} + m_{2}^{2}}{2} + \frac{\Delta m^{2}}{2} \begin{pmatrix} -\cos 2\theta & \sin 2\theta \\ \sin 2\theta & \cos 2\theta \end{pmatrix}$$

✓ We use

Η

$$|\nu^{\alpha}\rangle_{t} \simeq e^{-ipt} [e^{-im^{\dagger}mt/2E}]_{\alpha\beta} |\nu^{\beta}\rangle \quad (\textbf{3})$$

$$\Rightarrow \\ |\nu^{\alpha}\rangle_{t} = \begin{pmatrix} \cos\frac{\Delta m^{2}}{4E}t - i\sin\frac{\Delta m^{2}}{4E}t\cos 2\theta & -i\sin\frac{\Delta m^{2}}{4E}t\sin 2\theta \\ -i\sin\frac{\Delta m^{2}}{4E}t\sin 2\theta & \cos\frac{\Delta m^{2}}{4E}t + i\sin\frac{\Delta m^{2}}{4E}t\cos 2\theta \end{pmatrix} |\nu^{\beta}\rangle \\ \text{ere the common phase factor } e^{-i(p + \frac{m_{1}^{2} + m_{2}^{2}}{4E})t} \text{ was dropped.}$$

2. v oscillation in vacuum (4)

➢Oscillation of 2-flavor neutrinos in vacuum

- $\checkmark v \text{ at time t}$ $|v^{\alpha}\rangle_{t} = \begin{pmatrix} \cos\frac{\Delta m^{2}}{4E}t + i\sin\frac{\Delta m^{2}}{4E}t\cos 2\theta & -i\sin\frac{\Delta m^{2}}{4E}t\sin 2\theta \\ -i\sin\frac{\Delta m^{2}}{4E}t\sin 2\theta & \cos\frac{\Delta m^{2}}{4E}t i\sin\frac{\Delta m^{2}}{4E}t\cos 2\theta \end{pmatrix} |v^{\beta}\rangle$ (5)
- ✓ Transition from $|\nu^e\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $|\nu^e\rangle_t$ is then derived $\langle \nu^e | \nu^e \rangle_t = \cos \frac{\Delta m^2}{4E} t + i \sin \frac{\Delta m^2}{4E} t \cos 2\theta$
- ✓ The transition probability is $P_{\nu_e \rightarrow \nu_e} = |\langle \nu^e | \nu^e \rangle_t|^2 = 1 \sin^2 2\theta \sin^2 \frac{\Delta m^2}{4E} t$ $V_\mu \rightarrow \nu_\mu, \ \overline{\nu}_e \rightarrow \overline{\nu}_e, \ \overline{\nu}_\mu \rightarrow \overline{\nu}_\mu$ Oscillation of v propagating in a vacuum (Gribov & Pontecorvo)
 ✓ Transition from $|\nu^e\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ to $|\nu^\mu\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ $P_{\nu_e \rightarrow \nu_\mu} = |\langle \nu^\mu | \nu^e \rangle_t|^2 = \sin^2 2\theta \sin^2 \frac{\Delta m^2}{4E} t$ Same for $\nu_\mu \rightarrow \nu_e, \ \overline{\nu}_e \rightarrow \overline{\nu}_\mu, \ \overline{\nu}_\mu \rightarrow \overline{\nu}_e$

2. v oscillation in vacuum (5)

➢Oscillation length

$$\frac{\Delta m^2}{4E} l_0 = \pi$$

✓ Transition probabilities measured at a distance L=t

$$P_{\nu_e \to \nu_e} = 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2}{4E} t \qquad P_{\nu_e \to \nu_\mu} = \sin^2 2\theta \sin^2 \frac{\Delta m^2}{4E} t \\ = 1 - \sin^2 2\theta \sin^2 \left(\pi \frac{L}{l_0}\right) \qquad = \sin^2 2\theta \sin^2 \left(\pi \frac{L}{l_0}\right)$$

✓ The signal for oscillation disappears if $L >> I_0$, or

 $\Delta m^2 \gg 4\pi E/L$

 \rightarrow t-dependent sine factor oscillates rapidly, and it reduces to

$$P_{\nu_e \to \nu_e} = 1 - \frac{1}{2}\sin^2 2\theta$$

 \rightarrow `time averaged oscillation'

- o oscillation information has been lost
- \circ $\,$ we can only measure the mixing angle.

3. End of v oscillation (concept of wave packets)

 $\succ v$ oscillation stops when waves of v_1 and v_2 separate

 $> m_1 > m_2 \rightarrow v_1 < v_2 \quad \text{(difference in velocity)} \rightarrow \text{waves of 1 \& 2 separate}$ $v_i = p_i/E = \frac{\sqrt{E^2 - m_i^2}}{E} \approx 1 - \frac{m_i^2}{2E^2}$ $\Delta v = v_2 - v_1 \approx \frac{\Delta m^2}{2E^2}$

 \succ The interference between waves of 1 & 2 disappears \rightarrow oscillation stops

Appendix 1. Neutrino facility in China

≻Daya Bay

- \checkmark east side of the Dapeng peninsula, on the west coast of Daya Bay
- ✓ Measurement of θ_{13} using \bar{v}_{e} produced in reactors

Survival of \bar{v}_e $\Delta m^2_{13} = 2.5 \times 10^{-3} \text{ eV}^2$

http://dayawane.ihep.ac.cn/twiki/bin/view/Public/

Appendix 1. Neutrino facility in China

 $> \sin^2 2\theta_{13} = 0.084 \pm 0.005$, $|\Delta m^2_{ee}| = (2.42 \pm 0.11) \times 10^{-3} \, eV^2$

15

An et al. Phys. Rev. Lett. **115**, 111802 (2015)

4. v oscillation in matter

In stars and neutron stars, temperature is low $[T \le O(10) \text{ MeV}]$ \succ \rightarrow abundant e[±] ν_e ν_e e ν_e no μ^{\pm} and τ^{\pm} →charged current ZW╉ \mathcal{V}_{ρ} interaction of v_e e ν_e e e $H_{\text{eff}} = \frac{G_F}{\sqrt{2}} \ \bar{\nu_e} \gamma_\mu (1 - \gamma_5) \nu_e \ \bar{e} \gamma_\mu (1 - \gamma_5) e$ $\nu_{\mu(\tau)}$ $\nu_{\mu(\tau)}$ Z $\nu_{\mu(\tau)}$ Maximal conversion of ee $v_e \rightarrow v_u$ even for small θ Fig. 8.8. Coherent scattering of ν_e and $\nu_{\mu}(\nu_{\tau})$ in matter. Mikheyev-Smirnov-Wolfenstein (MSW) mechanism $i\frac{d}{dr}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta + \sqrt{2}G_{\mathrm{F}}n_{e} & \frac{\Delta m^{2}}{4E_{\nu}}\sin 2\theta\\\frac{\Delta m^{2}}{4E_{\nu}}\sin 2\theta & \frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta\end{array}\right)\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$

 $\Delta m^2 = m_2^2 - m_1^2$

5. Effective masses and mixing angle in matter (1)

➤ Using

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = U \begin{pmatrix} \tilde{\nu}_1 \\ \tilde{\nu}_2 \end{pmatrix} = \begin{pmatrix} \cos \tilde{\theta} & \sin \tilde{\theta} \\ -\sin \tilde{\theta} & \cos \tilde{\theta} \end{pmatrix} \begin{pmatrix} \tilde{\nu}_1 \\ \tilde{\nu}_2 \end{pmatrix}$$

~: quantities in matter

the Hamiltonian is diagonalized

$$i\frac{d}{dr}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta + \sqrt{2}G_{F}n_{e}\\\frac{\Delta m^{2}}{4E_{\nu}}\sin 2\theta\end{array}\right) \left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$$
$$\frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta\end{array}\right) \left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$$
$$\cos 2\tilde{\theta} = \frac{-A/\Delta m^{2} + \cos 2\theta}{\sqrt{(A/\Delta m^{2} - \cos 2\theta)^{2} + \sin^{2}2\theta}}$$
$$\Delta m^{2} = m_{2}^{2} - m_{1}^{2}$$

$$\sin 2\tilde{\theta} = \frac{\sin 2\theta}{\sqrt{(A/\Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta}}$$

$$\tilde{m}^{2}_{\frac{1}{2}} = \frac{A}{2} \mp \frac{1}{2} \sqrt{\left(A - \Delta m^{2} \cos 2\theta\right)^{2} + \left(\Delta m^{2}\right)^{2} \sin^{2} 2\theta},$$

$$A = 2\sqrt{2}E_{\nu}G_{\rm F}n_e$$

= 7.633 × 10⁻⁵ eV² $\left(\frac{E_{\nu}}{1 \text{ MeV}}\right) \left(\frac{\rho}{10^3 \text{ g cm}^{-3}}\right) \left(\frac{Y_e}{0.5}\right).$

5. Effective masses and mixing angle in matter (2)

Fig. 8.9. (a) Effective neutrino mass squared in the medium with electron density n_e . $n_{e,crit}$ is the crossing point defined by (8.107). This figure corresponds to $\sin^2 2\theta = 0.01$. (b) Mixing angle $\tilde{\theta}$ in the medium as a function of n_e , corresponding to the case shown in (a).

$$\tilde{m}_{\frac{1}{2}}^{2} = \frac{A}{2} \mp \frac{1}{2} \sqrt{\left(A - \Delta m^{2} \cos 2\theta\right)^{2} + \left(\Delta m^{2}\right)^{2} \sin^{2} 2\theta}, \qquad \qquad \tilde{\theta} = \frac{1}{2} \tan^{-1} \left(\frac{\sin 2\theta}{-A/\Delta m^{2} + \cos 2\theta}\right)$$

$$\blacktriangleright \text{ Level crossing at } : n_{e,\text{crit}} \equiv \frac{1}{2\sqrt{2}G_F} \frac{\Delta m^2}{E} \cos 2\theta \qquad \begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \tilde{\theta} & \sin \tilde{\theta} \\ -\sin \tilde{\theta} & \cos \tilde{\theta} \end{pmatrix} \begin{pmatrix} \tilde{\nu}_1 \\ \tilde{\nu}_2 \end{pmatrix}$$

- > For $n_e << n_{e,crit}$, $\tilde{\theta}$ and \tilde{I} approach the values in vacuum.
- \succ For n_e >>n_{e,crit}, θ→π/2 and ...

6. Effective mixing length

Oscillation length in matter is

$$\tilde{l} = l_0 \frac{1}{\left[(A/\Delta m^2 - \cos 2\theta)^2 + \sin^2 2\theta \right]^{1/2}}.$$

$$l_0 = \pi \frac{4E_\nu}{\Delta m^2}$$

$$= 24.80 \text{ km} \left(\frac{E_\nu}{1 \text{ MeV}} \right) \left(\frac{\Delta m^2}{10^{-4} \text{ eV}^2} \right)^{-1}$$

 $\Lambda \mathbf{F}$

 \rightarrow much shorter than that in a vacuum

> Maximal mixing ($\tilde{\theta} = \pi/4$) occurs at $n_e = n_{e,crit}$

$$: n_{e, ext{crit}} \equiv \frac{1}{2\sqrt{2}G_F} \; \frac{\Delta m^2}{E} \cos 2\theta$$

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos \tilde{\theta} & \sin \tilde{\theta} \\ -\sin \tilde{\theta} & \cos \tilde{\theta} \end{pmatrix} \begin{pmatrix} \tilde{\nu}_1 \\ \tilde{\nu}_2 \end{pmatrix}$$
$$= \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} \tilde{\nu}_1 \\ \tilde{\nu}_2 \end{pmatrix}$$

7. v propagation in stars

Assume: v_e produced in a region n_e >n_{e,crit} propagates into a region n_e <n_{e,crit}
 If the density gradient d(ln n_e)/dr is small, v conversion occurs adiabatically

8. Adiabatic condition

> Adiabatic condition: (energy gap) × (transition time) >> \hbar

The MSW resonance occurs at $A = \Delta m^2 \cos 2\theta$ \rightarrow its width is $\delta A \sim \Delta m^2 \sin 2\theta$

9. Numerical solutions

9-1. 2-flavor oscillation in a constant n_e

Schrödinger equation:

$$i\frac{d}{dr}\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right) = \left(\begin{array}{c}-\frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta + \sqrt{2}G_{\mathrm{F}}n_{e} & \frac{\Delta m^{2}}{4E_{\nu}}\sin 2\theta\\\frac{\Delta m^{2}}{4E_{\nu}}\sin 2\theta & \frac{\Delta m^{2}}{4E_{\nu}}\cos 2\theta\end{array}\right)\left(\begin{array}{c}\nu_{e}\\\nu_{\mu}\end{array}\right)$$
$$\Delta m^{2} = m_{2}^{2} - m_{1}^{2}$$

> The squared mass of energy eigenvalues of the above Hamiltonian are

$$\begin{split} \tilde{m}^{2}_{\frac{1}{2}} &= \frac{A}{2} \mp \frac{1}{2} \sqrt{\left(A - \Delta m^{2} \cos 2\theta\right)^{2} + \left(\Delta m^{2}\right)^{2} \sin^{2} 2\theta}, \\ A &= 2\sqrt{2}E_{\nu}G_{\mathrm{F}}n_{e} \\ &= 7.633 \times 10^{-5} \ \mathrm{eV}^{2} \left(\frac{E_{\nu}}{1 \ \mathrm{MeV}}\right) \left(\frac{\rho}{10^{3} \mathrm{g \ cm^{-3}}}\right) \left(\frac{Y_{e}}{0.5}\right) \end{split}$$

9-1a. 2-flavor oscillation in vacuum (1)

Coefficients of wave functions in vacuum

9-1a. 2-flavor oscillation in vacuum (2)

Transition probabilities in vacuum

Solid lines: P_{ee} , $P_{e\mu}$ Analytic solution Dashed lines: $P_{\mu e}$, $P_{\mu \mu}$ $P_{ee} = P_{\mu\mu} = 1 - \sin^2 2\theta \sin^2 (\pi L/l_0)$ $P_{e\mu} = P_{\mu e} = \sin^2 2\theta \sin^2 \left(\pi L/l_0\right),$ transition probability $\mathbb{P}_{lphaeta}$ l_{osc}=331 0.8 oscillation length 0.6 $l_0 = \pi \frac{4E_\nu}{\Delta m^2}$ 0.4 $= 24.80 \text{ km} \left(\frac{E_{\nu}}{1 \text{ MeV}}\right) \left(\frac{\Delta m^2}{10^{-4} \text{ eV}^2}\right)^{-1}$ 0.2 \rightarrow only one characteristic radial scale 10⁻³ numerical error $sin^{2}2\theta = 0.857$ 10^{-4} $\Delta m^2 = 7.50 \times 10^{-5} \text{ eV}^2$ 10^{-5} E_v=10 MeV ρ_e=0 10^{-6} 3.50.5 1.52 2.5 3 4 5.54.55 $\rightarrow I_0 = 331 \text{ km}$ r/l_0

9-1b. 2-flavor oscillation in matter (1)

Coefficients of wave functions (ρ =3 × 10² g cm⁻³, Y_e=0.5)

9-1b. 2-flavor oscillation in matter (2)

Transition probabilities ($\rho=3 \times 10^2$ g cm⁻³, Y_e=0.5)

Analytic solution

$$P_{ee} = P_{\mu\mu} = 1 - \sin^2 2\tilde{\theta} \sin^2 \left(\pi L/\tilde{l}\right)$$
$$P_{e\mu} = P_{\mu e} = \sin^2 2\tilde{\theta} \sin^2 \left(\pi L/\tilde{l}\right),$$

 \succ mixing angle

ĩ

$$\tilde{\theta} = \frac{1}{2} \tan^{-1} \left(\frac{\sin 2\theta}{-A/\Delta m^2 + \cos 2\theta} \right)$$

oscillation length

$$= l_0 \frac{1}{\left[\left(A/\Delta m^2 - \cos 2\theta \right)^2 + \sin^2 2\theta \right]^{1/2}}$$

р

D

Solid lines: P_{ee} , $P_{e\mu}$

Dashed lines: $P_{\mu e}$, $P_{\mu \mu}$

9-2. 3-flavor oscillation in general $n_e(r)$

3-flavor oscillation

$$i\frac{d}{dr}\begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix} = \begin{bmatrix} U\begin{pmatrix}0&0&0\\0&\frac{\Delta m_{21}^{2}}{2E_{\nu}}&0\\0&0&\frac{\Delta m_{31}^{2}}{2E_{\nu}} \end{bmatrix} U^{\dagger} + \begin{pmatrix}\pm\sqrt{2}G_{\mathrm{F}}n_{e}(r)&0&0\\0&0&0\end{pmatrix} \end{bmatrix} \begin{pmatrix}\nu_{e}\\\nu_{\mu}\\\nu_{\tau}\end{pmatrix}, \quad (1)$$
$$U = \begin{pmatrix}c_{12}c_{13}&s_{12}c_{13}&s_{13}e^{-i\delta_{\mathrm{CP}}}\\-s_{12}c_{23}-c_{12}s_{23}s_{13}e^{i\delta_{\mathrm{CP}}}&c_{12}c_{23}-s_{12}s_{23}s_{13}e^{i\delta_{\mathrm{CP}}}&s_{23}c_{13}\\s_{12}s_{23}-c_{12}c_{23}s_{13}e^{i\delta_{\mathrm{CP}}}&-c_{12}s_{23}-s_{12}c_{23}s_{13}e^{i\delta_{\mathrm{CP}}}&c_{23}c_{13}\end{pmatrix} s_{ij} = \sin\theta_{ij}s_{ij}$$

v parameters (Particle Data Group, as of May 25, 2020)

 $\begin{array}{ll} \sin^2(\theta_{12}) = 0.307 \pm 0.013 \ \Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \ eV^2 \\ \sin^2(\theta_{23}) = 0.536 \ ^{+0.023} \\ \sin^2(\theta_{13}) = 0.0218 \pm 0.0007 \\ \delta/\pi = 1.37 \ ^{+0.18} \\ _{-0.16} \end{array} \begin{array}{ll} \Delta m_{32}^2 = (2.444 \pm 0.034) \times 10^{-3} \ eV^2 \ (\text{NH}) \\ (-2.55 \pm 0.04) \times 10^{-3} \ eV^2 \ (\text{IH}) \\ \text{normal vs. inverted} \end{array}$

Mass hierarchy still undetermined

9-2a. 3-flavor oscillation in a constant n_e

9-2b. 3-flavor oscillation in a star (1)

v-oscillation in a model of SN1987A

(Shigeyama & Nomoto, ApJ 360, 242, 1990)

9-2b. 3-flavor oscillation in a star (2)

(Yoshida et al., ApJ 649, 319, 2006)

Summary

- 1. Neutrinos interact only weakly
 - Neutral and charged current reactions operate in stars and SNe
 - Neutrinos are very light, and produced in various astrophysical sites.
 - > 10^{58} v's are produced at one core-collapse SN.
 - Some stable nuclei are produced by SN v-process.
- 2. Neutrino flavors change
 - > Mass eigenstates and flavor eigenstates of v's are different.
 - Then, v-flavors change during propagation
 - The v-oscillation occurs due to interference of different mass eigenstates.
 - The oscillation ends when the wave packets separate.
 - In dense matter, the mixing angle and oscillation length of v's are different from those in vacuum.
 - > In SNe, flavor changes of v's occur through MSW resonances.

Backup

Appendix 1: Sterile neutrino decay

>sterile neutrino v_H , mass M_{vH} , active-sterile mixing Θ <<1 >Lagrangian

$$L_{\text{int}} = \frac{g_2}{2\cos q_w} \overline{n}_{La} g^m Z_m^0 n_{La} + \frac{g_2}{\sqrt{2}} \left(\overline{l}_a^- g^m W_m^- n_{La} + \overline{n}_{La} g^m W_m^+ l_a^- \right)$$
$$\stackrel{\Re n_{La} \ddot{0}}{\underset{\substack{\text{c} \\ \text{c} \\ \text{$$

7. Sterile neutrino interactions

 \succ Lagrangian related to the weak interaction of v_{H} :

$$\begin{split} \mathbf{V}_{\alpha \mathbf{L}} & \qquad \mathbf{V}_{\alpha \mathbf{L}} \\ L_{\text{int}} = \left[\bar{\nu}_{i} (U_{\alpha i})^{\dagger} + \bar{\nu}_{\mathrm{H}} \Theta \delta_{e\alpha} \right] \left(\frac{g}{2 \cos \theta_{\mathrm{w}}} Z_{\mu} \right) \frac{V_{\alpha \mathbf{L}}}{(U_{\alpha i} \nu_{i} + \Theta \delta_{e\alpha} \nu_{\mathrm{H}})} \\ & \quad + \frac{g}{\sqrt{2}} \bar{l}_{\alpha} \gamma^{\mu} W_{\mu}^{-} \left(U_{\alpha i} \nu_{i} + \Theta \delta_{e\alpha} \nu_{\mathrm{H}} \right) + \frac{g}{\sqrt{2}} \left[\bar{\nu}_{i} (U_{\alpha i})^{\dagger} + \bar{\nu}_{\mathrm{H}} \Theta \delta_{e\alpha} \right] \gamma^{\mu} W_{\mu}^{+} l_{\alpha} \\ & \quad \Rightarrow \bar{\nu}_{i} (U_{\alpha i})^{\dagger} \left(\frac{g}{2 \cos \theta_{\mathrm{w}}} Z_{\mu} \right) \Theta \delta_{e\alpha} \nu_{\mathrm{H}} + \bar{\nu}_{\mathrm{H}} \Theta \delta_{e\alpha} \left(\frac{g}{2 \cos \theta_{\mathrm{w}}} Z_{\mu} \right) U_{\alpha i} \nu_{i} \\ & \quad + \frac{g}{\sqrt{2}} \bar{l}_{\alpha} \gamma^{\mu} W_{\mu}^{-} \Theta \delta_{e\alpha} \nu_{\mathrm{H}} + \frac{g}{\sqrt{2}} \bar{\nu}_{\mathrm{H}} \Theta \delta_{e\alpha} \gamma^{\mu} W_{\mu}^{+} l_{\alpha}. \end{split}$$

 \succ Feynman rule for the weak theory \rightarrow matrix

$$|\mathcal{M}|^{2} = 32G_{\rm F}^{2}\Theta^{2}[A(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + B(p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) + Cm_{e}^{2}(p_{1} \cdot p_{2})],$$
(A1)

>Decay rate is

The is

$$\Gamma(\nu_{\rm H} \to \nu_{\alpha} e^{-} e^{+}) = \frac{1}{2M_{\nu_{\rm H}}} \int \frac{d^{3}p_{2}}{(2\pi)^{3} 2E_{\nu_{\alpha}}} \int \frac{d^{3}p_{3}}{(2\pi)^{3} 2E_{e^{-}}} \int \frac{d^{3}p_{4}}{(2\pi)^{3} 2E_{e^{+}}} \\ \times \left(\frac{1}{2}|\mathcal{M}|^{2}\right) (2\pi)^{4} \,\delta^{4}(p_{1} - p_{2} - p_{3} - p_{4}).$$

9. Sterile neutrino decay rates

≻Massive sterile neutrino can decay.

> If the mass is larger than $2m_e$, the decay products can include an e⁺e⁻ pair.

 $\Gamma\left(N \to \sum_{\alpha,\beta} \nu_{\alpha} \bar{\nu}_{\beta} \nu_{\beta}\right) = \frac{G_F^2 M_N^5}{192\pi^3} \cdot \sum_{\alpha} |U_{\alpha}|^2, \quad \text{(Gorbunov & Shaposhnikov, JHEP 10 2007, 015)}$ 0.5110 MeV $\Gamma\left(N \to l_{\alpha \neq \beta}^{-} l_{\beta}^{+} \nu_{\beta}\right) = \frac{G_{F}^{2} M_{N}^{5}}{102\pi^{3}} \cdot |U_{\alpha}|^{2} \left(1 - 8x_{l}^{2} + 8x_{l}^{6} - x_{l}^{8} - 12x_{l}^{4} \log x_{l}^{2}\right) ,$ μ : 105.6 MeV τ : 1784 MeV W^{\pm} : 80.2 GeV $x_l = \frac{\max\left[M_{l_{\alpha}}, M_{l_{\beta}}\right]}{M_{N}} ,$ $\Gamma\left(N \to \nu_{\alpha} l_{\beta}^{+} l_{\beta}^{-}\right) = \frac{G_{F}^{2} M_{N}^{5}}{192\pi^{3}} \cdot |U_{\alpha}|^{2} \cdot \left[(C_{1} \cdot (1 - \delta_{\alpha\beta}) + C_{3} \cdot \delta_{\alpha\beta}) \times \right]$ $^{\circ} Z^0$: 91.19 GeV $\times \left(\left(1 - 14x_l^2 - 2x_l^4 - 12x_l^6 \right) \sqrt{1 - 4x_l^2} + 12x_l^4 \left(x_l^4 - 1 \right) L \right)$ $+4(C_{2}\cdot(1-\delta_{\alpha\beta})+C_{4}\cdot\delta_{\alpha\beta})\left(x_{l}^{2}\left(2+10x_{l}^{2}-12x_{l}^{4}\right)\sqrt{1-4x_{l}^{2}}\right)$ p: 938.3 MeVn: 939.6 MeV $+ 6x_l^4 \left(1 - 2x_l^2 + 2x_l^4 \right) L \right)$, π^{\pm} : 139.6 MeV $L = \log \left[\frac{1 - 3x_l^2 - (1 - x_l^2)\sqrt{1 - 4x_l^2}}{x_l^2 \left(1 + \sqrt{1 - 4x_l^2}\right)} \right], \quad x_l \equiv \frac{M_l}{M_N}, \quad \pi^0: 135.0 \text{ MeV}$ Particle masses $C_{1} = \frac{1}{4} \left(1 - 4\sin^{2}\theta_{w} + 8\sin^{4}\theta_{w} \right) , \qquad C_{2} = \frac{1}{2}\sin^{2}\theta_{w} \left(2\sin^{2}\theta_{w} - 1 \right) ,$

$$C_3 = \frac{1}{4} \left(1 + 4\sin^2\theta_w + 8\sin^4\theta_w \right) , \qquad C_4 = \frac{1}{2}\sin^2\theta_w \left(2\sin^2\theta_w + 1 \right) .$$

10. Differential decay rates (1)

 \rightarrow Amplitude of the matrix element squared for the decay $v_{\rm H} \rightarrow v_{\alpha} + e^+ + e^-$

$$|\mathcal{M}|^{2} = 32G_{\rm F}^{2}\Theta^{2}[A(p_{1} \cdot p_{3})(p_{2} \cdot p_{4}) + B(p_{1} \cdot p_{4})(p_{2} \cdot p_{3}) + Cm_{e}^{2}(p_{1} \cdot p_{2})],$$
(A1)

 $A = (c_V + c_A)^2,$ $B = (c_V - c_A)^2 + 4\delta_{e\alpha} + 4(c_V + c_A)\delta_{e\alpha}, \quad W^{\pm} \text{ exchange}$ $C = (c_V^2 - c_A^2) + 2(c_V - c_A)\delta_{ea},$

 Z_0 exchange interference

G_F: Fermi constant Θ << 1: mixing angle p_i momentum

$$i = 1 (v_H), 2 (v_{\alpha}), 3 (e^{-}), 4(e^{+})$$

 $c_V = -1/2 + 2\sin^2\theta_W$ Vector coupling of charged leptons to Z⁰ Axial coupling of charged leptons to Z⁰ $c_A = -1/2$ $\sin^2 \theta_{\rm W} = 0.23$ Weak mixing angle

 \blacktriangleright Differential decay rate vs. energies of e⁺ & e⁻

$$\frac{d^{2}\Gamma}{dx_{3}dx_{4}} = \frac{G_{\rm F}^{2}\Theta^{2}M_{\nu_{\rm H}}^{5}}{64\pi^{3}}[Ax_{3}(1-x_{3}) + Bx_{4}(1-x_{4}) + 2Cx_{\rm m}^{2}(2-x_{3}-x_{4})], \qquad \text{(Ishida, MK, Okada, PRD 90, 083519, 2014)}$$
$$x_{\rm m} = m_{e}/M_{\nu_{\rm H}}$$
$$x_{i} = 2E_{i}/M_{\nu_{\rm H}}$$

10. Differential decay rates (2)

 \succ Differential decay rates vs. x₃ & x₄

$$\frac{d\Gamma}{dx_3} = \frac{G_F^2 \Theta^2 M_{\nu_H}^5}{64\pi^3} \left\{ Ax_3(1-x_3)x_{f3} + B\left(\frac{x_{f3}^2}{2} - \frac{x_{f3}^3}{3}\right) + 2Cx_m^2 \left[(2-x_3)x_{f3} - \frac{x_{f3}^2}{2} \right] \right\}_{x_{f3}=x_{f3,-}}^{x_{f3,+}}, \quad (A6)$$

$$\frac{d\Gamma}{dx_4} = \frac{G_F^2 \Theta^2 M_{\nu_H}^5}{64\pi^3} \left\{ A \left(\frac{x_{f4}^2}{2} - \frac{x_{f4}^3}{3} \right) + B x_4 (1 - x_4) x_{f4} + 2C x_m^2 \left[(2 - x_4) x_{f4} - \frac{x_{f4}^2}{2} \right] \right\}_{x_{f4} = x_{f4,-}}^{x_{f4,+}}, \quad (A7)$$

(Johnson, et al. PRD 56, 2970, 1997)

Range of parameters $2x_m \le x_i \le 1$

$$x_{\mathrm{f}i,\pm} = \frac{(2-x_i)(1+2x_\mathrm{m}^2-x_i)\pm(1-x_i)\sqrt{x_i^2-4x_\mathrm{m}^2}}{2(1+x_\mathrm{m}^2-x_i)}$$

➤Total decay rate

$$\begin{split} \Gamma(\nu_{\rm H} \rightarrow \nu_{\alpha} e^+ e^-) &= \frac{G_{\rm F}^2 \Theta^2 M_{\nu_{\rm H}}^5}{192 \pi^3} \{ C_1 [(1 - 14 x_{\rm m}^2 - 2 x_{\rm m}^4 - 12 x_{\rm m}^6) \sqrt{1 - 4 x_{\rm m}^2} - 12 x_{\rm m}^4 (1 - x_{\rm m}^4) L] \\ &+ 4 C_2 [x_{\rm m}^2 (2 + 10 x_{\rm m}^2 - 12 x_{\rm m}^4) \sqrt{1 - 4 x_{\rm m}^2} + 6 x_{\rm m}^4 (1 - 2 x_{\rm m}^2 + 2 x_{\rm m}^4) L] \}, \\ &\quad C_1 = \frac{A + B}{4}, \\ &\quad C_2 = \frac{C}{4}, \\ L &= \ln \left[\frac{1 - 3 x_{\rm m}^2 - (1 - x_{\rm m}^2) \sqrt{1 - 4 x_{\rm m}^2}}{x_{\rm m}^2 (1 + \sqrt{1 - 4 x_{\rm m}^2})} \right] \end{split}$$

11. Spectra of decay products

>Number spectra of e⁻ and e⁺ emitted at the decay of $v_H \rightarrow v_{\alpha} + e^+ + e^-$

Broad total spectrum $\rightarrow e^{\pm}$ with various energies are produced \rightarrow nonthermal e^{\pm} spectrum is also broad

12. Average energies of e⁺ & e⁻

> Dependence of energy fractions given to v_{α} , e⁻ and e⁺

(Ishida, MK, Okada, PRD 90, 083519, 2014)

$$\begin{split} \bar{x_3} &= \frac{1}{\Gamma} \int_{2x_m}^{1} x_3 \frac{d\Gamma}{dx_3} dx_3 & \bar{x_4} = \frac{1}{\Gamma} \int_{2x_m}^{1} x_4 \frac{d\Gamma}{dx_4} dx_4 & L_1 = \ln\left[\frac{1 - 3x_m^2 - (1 - x_m^2)\sqrt{1 - 4x_m^2}}{2x_m^3}\right], \\ &= \frac{1}{\Gamma} \frac{G_F^2 \Theta^2 M_{b_H}^5}{64\pi^3} f_E(A, B, C, x_m), & = \frac{1}{\Gamma} \frac{G_F^2 \Theta^2 M_{b_H}^5}{64\pi^3} f_E(B, A, C, x_m), \\ f_E(A, B, C, x_m) &= A\left\{\frac{1}{60}\sqrt{1 - 4x_m^2}(3 - 29x_m^2 + 48x_m^4 - 70x_m^6 - 60x_m^8) \\ &- x_m^4[(1 + x_m^2)(1 - x_m^4)L_1 + (3 - x_m^2 + x_m^4 + x_m^6)L_2]\right\} \\ &- B\left\{\frac{1}{60}\sqrt{1 - 4x_m^2}(9 - 52x_m^2 + 14x_m^4 + 80x_m^6 + 120x_m^8) \\ &+ x_m^4[(1 - x_m^4 - 2x_m^6)L_1 + (3 + x_m^4 + 2x_m^6)L_2]\right\} \\ &+ C\left\{\frac{1}{6}x_m^2\sqrt{1 - 4x_m^2}(5 - 12x_m^2 + 10x_m^4 - 12x_m^6) \\ &+ 2x_m^4[(1 - x_m^2)(1 - x_m^4)L_1 + (1 + x_m^2 + x_m^4 - x_m^6)L_2]\right\} \\ &+ (B - 2Cx_m^2)\left\{\frac{1}{24}\sqrt{1 - 4x_m^2}(5 - 38x_m^2 + 6x_m^4 + 36x_m^6) \\ &- \frac{1}{2}x_m^4(1 + 3x_m^4)(L_1 - L_2)\right\}, \end{split}$$

3. Effects of sterile v mixing to active v (Ishida, MK, Okada, PRD 90, 083519, 2014)

3-1. model

>Dirac sterile neutrino, mass $M_{vH}=O(10)$ MeV, active-sterile mixing Θ >Lagrangian

$$L_{\text{int}} = \frac{g_2}{2\cos q_w} \overline{n}_{La} g^m Z_m^0 n_{La} + \frac{g_2}{\sqrt{2}} \left(\overline{l}_a^{-} g^m W_m^{-} n_{La} + \overline{n}_{La} g^m W_m^{+} l_a^{-} \right)$$
$$\stackrel{\Re n_{La} \ddot{0}}{\underset{\substack{\text{c} \\ \text{c} \\ \text{c} \\ \text{e} \\ \text{c} \\ \text{c} \\ \text{e} \\ \text{c} \\ \text$$

3-1. model

 $\succ v_{\rm H}$ decay → injection of energetic e[±] and v $\succ v$ freely streams in the universe after BBN

 \rightarrow nonthermal v production \rightarrow v energy density is increased

$$\rho = \rho_{\gamma} + (\rho_{e^{-}} + \rho_{e^{+}}) + \rho_{\nu,\text{th}} + \rho_{b} + \rho_{\nu_{\text{H}}} + \rho_{\nu,\text{nt}}$$

 \blacktriangleright energies of e[±] are transferred to background γ

via interactions with background γ and e⁻

 \rightarrow background γ is heated

→baryons and thermal background neutrino are diluted

 $\rightarrow \eta$ is decreased, and v energy density is decreased

 $\succ \gamma$ injection spectrum

 \succ The v_H decay alone cannot be a solution to the Li abundance of MPSs

 \succ It could be a solution if the stellar Li abundances are depleted by a factor ~ 2

This model can be tested with future measurements of N_{eff}

N_{eff} value is increased

Τg