Update results of TPC module and prototype

Huirong Qi

ZhiYang Yuan, Yue Chang, Liwen Yu, Jian Zhang, Wei Liu, Zhi Deng, Yulan Li, Hui Gong Institute of High Ene*r*gy Physics, CAS Tsinghua University CEPC Det.&Phy., August, 17, 2021

Outline

Status of pixel TPCUpdate simulation and analysis

Pixel TPC@LCTPC

- 32 chip quad module in the gas envelop
- Entrance windows are 50µm kapton
- The setup at DESY includes a MIMOSA silicon telescope with 2×3 planes

Beam test of the pixel TPC

Event Pictures using pixel readout at B = 1 T

- Some interesting events reconstruction, which can either not be seen by pads or which are usually nor recorded
- Analyzing on going (dE/dx, Time walk correction...)

TPC concept

Operating principle of TPC

electric field and magnetic field are applied in parallel in the TPC

z component is obtained from drift time \Rightarrow <u>3-dimensional (x, y, z) information</u>

Electrons cluster profile to reach at the readout pad

- High magnetic field
 - Reduce the diffusion along the drift length
 - Cluster size limited to the pixel readout

- Higher rate and position resolution
- Discharge near to readout pad

- Not reach to higher rate
- No Discharge near to readout pad

Update simulation and analysis

Our triple GEM's results (previous)

- **D 2D** detector module of Triple GEMs in 2015
- □ Investigation of single event's electrons cluster at the readout pads
- Drift length: 14mm (only this parameter)

2D profile of ⁵⁵Fe With Ø5.0mm collimator

2D profile of the electrons cluster size at the readout pads

Status of TPC prototype

- Based on this prototype and analysis of the electrons cluster size at the readout pads
- Data taking and more analysis
- Commissioning: Huirong Qi, Zhiyang Yuan, Yiming Cai, Yue Chang, Jiang Zhang, Yulan Li, Zhi Deng

TPC prototype in the lab

Time window of self-trigger (or triggerless)

- Self-trigger (or triggerless) of TPC prototype
 - Self-trigger principle: Just consideration of the pulse time @400MHz TDC
 - □ Shape time: 120ns (CR²-RC³, CASAGEM ASIC)
 - □ ⁵⁵Fe with Ø1.0mm collimator
 - □ Trigger rate(every pulse): ~34550Hz

- Self-trigger (or triggerless) of TPC prototype
 - Optimization: different time window value
 - Confirmation: using ⁵⁵Fe energy spectrum
 - Optimization selection: eliminate incomplete or accidental coincidence event

Spectrum of ⁵⁵Fe using TPC prototype

- Self-trigger (or triggerless) of TPC prototype
 - Along the different drift length
 - Setting as the optimization time window
 - Some parameters of the electron cluster size

Drift length of Z position	Profile of the electrons cluster(single event)	Minimum electrons cluster	Maximum electrons cluster
10.30mm	1.06 mm	3	6
7.30 mm	0.85 mm	3	6
5.84 mm	0.76 mm	3	6
3.65 mm	0.60 mm	2	4
1.46 mm	0.38 mm	1	4

Confirmation with the previous results

- Self-trigger (or triggerless) of TPC prototype
 - Setting as the optimization time window
 - Operation mixture gases: T2K. P10, Ar/CO2=90/10

Gain of ⁵⁵Fe using TPC prototype

No conclusions

- But, the electrons cluster size can be investigated and analyzed using UV laser beam, even without the high magnetic field
- And, this parameter can measured using the smaller dipole magnetic(0.1T-3T) field with our TPC module
- This parameter is very important for TPC technology

- Electrons drifting along the drift length
 - Electromagnetic field (temperature, pressure, gases)
 - Fluctuation of gain (impact N_{eff})
 - Electronics (Shape time, amplifier, digitalized)
 - **Diffusion:** D_T , D_L

Langevin's formula for electronic
directional drift
$$v = \mu |E| \frac{1}{1 + \omega^2 \tau^2} (\hat{E} + \omega \tau [\hat{E} \times \hat{B}] + \omega^2 \tau^2 (\hat{E} \cdot \hat{B}) \hat{B})$$

 $v = \mu E$

No magnetic or the electric field is parallel to the magnetic field

> With magnetic and no parallel of E/B E×B effect

$$v_{x} = \frac{\mu}{1 + (\omega\tau)^{2}} [E_{x} - \frac{\omega\tau}{|B|} (E_{y}B_{z} - E_{z}B_{y}) + \frac{(\omega\tau)^{2}}{|B|^{2}} (E_{x}B_{x} + E_{y}B_{y} + E_{z}B_{z})B_{x}]$$

$$v_{y} = \frac{\mu}{1 + (\omega\tau)^{2}} [E_{y} - \frac{\omega\tau}{|B|} (E_{z}B_{x} - E_{x}B_{z}) + \frac{(\omega\tau)^{2}}{|B|^{2}} (E_{x}B_{x} + E_{y}B_{y} + E_{z}B_{z})B_{y}]$$

$$v_{z} = \frac{\mu}{1 + (\omega\tau)^{2}} [E_{z} - \frac{\omega\tau}{|B|} (E_{x}B_{y} - E_{y}B_{x}) + \frac{(\omega\tau)^{2}}{|B|^{2}} (E_{x}B_{x} + E_{y}B_{y} + E_{z}B_{z})B_{z}]$$

- Electrons drifting along the drift length
 - **Gas impurities: Oxygen and water**

- Electrons drifting along the drift length
 - **Gas impurities: Oxygen and water**

- Electrons drifting along the drift length
 - **Gas impurities: Oxygen and water**

Conclusion

The influence of the purity(ppm) of Oxygen and water can be ignored for the previous taking data from TPC prototype.

Analysis of UV laser stability

- **Profile of UV laser beam**
 - Update results of the UV laser stability from TPC prototype

Measurement and profile of UV laser beam for the tests

Analysis of UV laser stability

- **Profile of UV laser beam**
 - Profile(sigma) of the X-Y axis direction along the test duration time
 - UV laser tube need about 1 min warming up time

X and Y axis direction stability of UV laser beam

Analysis of UV laser stability

Conclusion

Precision value of UV laser stability can meet TPC prototype's resolution Qutel 266nm UV laser is very good for testing and analysis

Stability of UV laser beam

Summary

- Some update information of the pixel TPC beam test in DESY.
- Some update results of the electrons cluster size are starting to investigate and some new plan are raised for this parameter.
- Some update simulation and analysis are given here.

Thanks for your attention.