Status and plan for the dN/dx simulation and experiment

Guang Zhao, Shuiting Xin, Mingyi Dong, Linghui Wu, Shengsen Sun zhaog@ihep.ac.cn

CEPC Physics and Detector Meeting Aug. 25th, 2021

Outline

- Introduction
- Full simulation with the experiment
- Fast simulation
- Summary

Introduction

- Particle ID with a drift chamber is a key feature for the 4th conceptual detector
- Ionization measurement using the cluster counting technique (dN/dx) can benefit from small fluctuations
- Need detailed simulation for the feasibility and performance study
- Input from experiment tests is important for simulation

4th Conceptual Detector

The simulation workflow

A framework of dN/dx simulation is ready

Full simulation

Signal generator (Garfield++):

- Heed: ionization process
- Magboltz: gas properties (drift/diffusion)

Electronics:

Electronics

- Preamplifier
- Noises
- ADC

Realistic waveform

Counting method:

• Moving average (MA):

•
$$MA[i] = \frac{1}{M} \times \sum_{k=0}^{K < M} S[i-k]$$

- First difference (D1):
 - D1[i] = MA[i] MA[i 1]
- Need experiment to provide more realistic electronics information
 - Noises
 - Response function

Experiment with a prototype detector

Waveform examples

Can observe peaks with fast rising edge in the waveforms

Small gain and low noise

- Signal amplitude: ~10¹ mV (max. peak)
- Noise amplitude: ~10⁻¹ mV (sigma)

Noise extraction

Extract noise information from the baseline of the waveform

FET analysis of noises $x(t) = \sum_{k=0}^{+\infty} ReX[k] \cos(2\pi kt/T)$ $- ImX[k] \sin(2\pi kt/T)$ polar notation $MagX[k] = (ReX[k]^2 + ImX[k]^2)^{1/2}$ $PhaseX[k] = \arctan\left(\frac{ImX[k]}{ReX[k]}\right)$

 Average frequency spectra with 227 measurements
Assume random phases

Experiment with a signal generator

- Measure the signal with or without the pre-amplifier
- Try to extract the response of the preamplifier

Response function analysis (preliminary)

1: Signal w/o amp
2: Response function
3: Signal w/ amp

Extracted pre-amplifier response:

- Time constant ~0.6 ns (assume an exponential form)
- Risetime ~ 1ns: consistent with our previous simulation
- Check the response function by convoluting it to the signal w/o pre-amp.

Green: $1 \otimes 2$

30

Show good consistency.

Red: 3

20

Amplitude

0.1

0.05

10

40

50

Time (ns)

Plan: Prototype experiment with collimation

- Constrain the entrance angle and track length of the emitted electrons from the Sr source
- Two scintillator counters with small active area will be used to provide trigger signals

Fast simulation in CEPCSW

- Main objective: Speeding up the simulation to enable the study of PID performance
- Method: Sampling dN/dx (truth) by a certain track length using Garfield.
- Geometry setup:
 - Floating DC up to Rout =1.8m (1cm*100 layers)
 - A TOF detector surrounded at R = 1.8m
 - Can handle single particle in different angle.

Fast simulation in CEPCSW (II)

- dN/dx model: $N = N_{truth} \times \epsilon = N_{truth} \times Gaus(f(N_{truth}), \sigma))$.
 - N_{truth} : Garfield sampling
 - ϵ : counting efficiency, tuned based on full simulation
- TOF model:
 - Assuming a resolution of 50 ps

Fast simulation in CEPCSW (III)

Provide PID information:

- A standalone package is also developed for physics analysis to do quick studies
 - Input: basic track related parameter
 - angle, momentum, distance from initial point.
 - Output: the probability of assumption on each particle species, with dN/dx (and TOF, optional)
 - χ , likelihood

Structure of the fast simulation

- Initial prototype experiments are setup for the ionization measurement. The following information is extracted:
 - Electronics noises
 - Response of the preamplifier (preliminary)
- A fast simulation toolkit is developed for physics users to study the PID performance

To do:

- Improve the experiment in several aspects
- Import the results from the experiment to the full simulation

Thank you

Backup

<u>Time constants (τ) and risetime:</u>

Response function result from a pulse signal

