Top mass measurements at CEPC

Zhan Li on behalf of

Xiaohu Sun, Shuiting Xin, Yaquan Fang, Gang Li, Shudong Wang, Zhijun Liang, Yiwei Wang, Hao Zhang

CEPC Physics and Detector Plenary Meeting

2021.8.25

Institute of High Energy Physics Chinese Academy of Sciences

Motivation

- Top mass is a fundamental factor in the Standard Model, also a stringent check of internal consistency of SM.
- Top mass is measured using top reconstruction at hadron colliders. But it is difficult to further improve the precision given dominant systematic uncertainties at hadron colliders.
- e⁺e⁻ colliders can provide not only the top reconstruction method but also the ttbar threshold scan.

Motivation

- ttbar threshold scan is made against \sqrt{s} and cross section, which is direct observable.
- It brings measurements of such parameters:
 - Top mass
 - Top width
 - Top Yukawa coupling
 - $\alpha_{\rm s}$ (strong coupling)

Our setup

- Use the package "QQbar_threshold" to calculate cross section near threshold in ee-colliders at N3LO in resummed non-relativistic perturbation theory
 - Coulomb interactions between the quark and the antiquark leading to a strong enhancement of the cross section is included
 - Initial state radiation (ISR) effects are also included in the package
- We incorporate Luminosity Spectrum(LS) by a simple Gaussian function with 1 GeV as the energy resolution at the moment
 - We will update to CEPC LS (~0.5GeV) provided by Yiwei Wang.

Fig. 4 Top pair production cross section from theory calculations, with the luminosity spectrum (LS) of CLIC at 350 GeV and ISR as well as for all effects combined

Method: \sqrt{s} scan

- Since we are interested in the precise measurement of top mass by using threshold scan, we can try to fit the calculated models to experiment data.
- We can construct our likelihood function with 1 energy point in the following way:

$$L = P(D|E(\sigma(m_{top}, \Gamma_{top}, \alpha_{s}, \sqrt{s})), \mathcal{L}, \theta)$$

- Since we do not have real experiment data, we use QQbar_threshold to generate pseudo data instead.
 - In this set of pseudo data, top mass is set to be 171.5 GeV.

Method: \sqrt{s} scan

• For different top masses, we select multiple center mass energy points. To combine the statistical power of all scan points, we can multiply 1-point likelihood functions together:

$$L = \prod_{i} P(D_i | E_i(\sigma(m_{top'} \Gamma_{top'} \alpha_{s'} \sqrt{s})), \mathcal{L}_i, \theta)$$

• i corresponds to the i-th scan point

Reminder: last status at Yangzhou Workshop

- We use these setup:
 - The acceptance and selection efficiency are assumed to be 100%.
 - Background events are not considered.
 - ISR is considered, but LS is not included.
 - Luminosity per scan point is assumed to range from 25fb⁻¹ to 100fb⁻¹.
 - Systematic uncertainties are not considered.
- We use these 3 following schemes:

4 points scheme, 6 points scheme, and 8 points scheme.

$6\sqrt{s}$ scheme={341,342,342.5,343,343.5,344.5}

25fb⁻¹ sigma: -0.004125 +0.004125

100fb⁻¹ sigma: -0.002189 +0.002189

\sqrt{s} NLL scan

- We pick the 6- \sqrt{s} scheme for its better performance.
- And we tested more luminosity assumptions.
- The curve is consistent with our expectation.

 $4\sqrt{s}$ scheme={341.5,342.5,343,344.5}

Summary of Previous Results

scheme	4 points	6 points	8 points
σ(m _t)/MeV 100fb ⁻¹	2.9	2.2	2.2
σ(m _t)/MeV 25fb ⁻¹	5.1	4.1	4.1

- Build up the machinery of this \sqrt{s} scan to estimate measurement uncertainties.
- Test with a few set of parameters and schemes.
- The way of selecting points is crucial if we want lower error.

Fisher information

Setup for this presentation

- ISR and LS are considered. Systematic uncertainties are not taken into account.
- Acceptance and selection efficiency are added.
- Background events are included.
- We only consider these 2 channels: semi-leptonic and fullyhadronic.
- Luminosity are adjusted.

Acceptance and selection efficiency for signal

- The number read from CLIC Eur. Phys. J. C (2013) 73:2530
- semi-leptonic :
 - Data: 8296, Bkg: 643, extracted signal: 7653, acceptance*selection efficiency = 48.13%, Branch ratio=30%
- Full-hadronic
 - Data: 11396, Bkg: 1393, extracted signal: 10003, acceptance*selection efficiency = 41.0%, Branch ratio=46%
- These parameters are under 500 GeV situation. At the moment we assume that acceptance and selection efficiency will not change under 352 GeV situation.
- The signal yields of our pseudo data: at 343GeV, 100 $\rm fb^{-1}$
 - semi leptonic 4009.14
 - fully hadronic 5236.67

Background events

- Background events are directly scaled from 500GeV to 352GeV, according to their cross section estimated by CLIC paper.
 - For CLIC's 500GeV situation, the luminosity is 100 ${\rm fb^{-1}}$
 - Because there is no information about background yields under 352GeV in the paper of CLIC.
 Table 1 Signal and considered physics background processes, with their approximate cross section calculated for CLIC at 500 GeV and at

Background

Background

- Result:
 - semi leptonic bkg event number:2380
 - fully hadronic bkg event number:5156

352 GeV Type Final σ σ 500 GeV 352 GeV state Signal ($m_{top} = 174 \text{ GeV}$) tī 530 fb 450 fb Background WW 7.1 pb 11.5 pb Background 410 fb 865 fb ZZ

 $q\bar{q}$

WWZ

25.2 pb

10 fb

2.6 pb

40 fb

Luminosity and scan \sqrt{s} range

- In last work, the luminosity for every point is 100 fb^{-1} .
- In this work, the luminosity of each point is the same. Total luminosity will be 100 fb^{-1} .
 - We would like to compare our results with CLIC, so we are trying to keep these parameters close to CLIC's.
- \sqrt{s} scan ranges from 340GeV to 345GeV.
 - Drop less sensitive points step by step from 8 points to 1 points.

$8\sqrt{s}$ scheme ={340,341,342,342.5,343,343.5,344.5,345}

 $12.5 \text{fb}^{-1} \text{ per point } \sigma(m_t): -0.01844 + 0.01844$

$6\sqrt{s}$ scheme={341,342,342.5,343,343.5,344.5}

We dropped 340 and 345.

$4\sqrt{s}$ scheme={342,342.5,343,343.5}

We dropped 341 and 344.5.

Graph

 $25 fb^{-1}$ per point $\sigma(m_t)$: -0.01344 +0.01344

$1\sqrt{s}$ scheme={343}

 $100 \text{fb}^{-1} \text{ per point } \sigma(m_t) : -0.01089 + 0.01098$

Results

scheme	8 points	6 points	4 points	1 point
σ (m _t) /MeV	18.44	15.97	13.44	10.93

- For 171.5GeV top mass, 343 GeV center mass energy is the best point, given the total luminosity 100 fb⁻¹.
- Top mass is known as 171.5GeV, so we can get the best point through its known fisher information. But for unknown top mass, we need to first locate a proper range.

Compare with CLIC and FCC-ee

scheme	8 points	6 points	4 points	1 point
$\sigma(m_t)/MeV$	18.44	15.97	13.44	10.98

- The estimation of FCC-ee:
 - ~17 MeV for top mass (stat. uncert.)
 - ~45 MeV for top width (stat. uncert.)
 - with 25fb⁻¹ taken at each of the 8 centre-of-mass energy points N3LO cross-section calculation brings 40 MeV uncertainty additionally

2d fit results of CLIC Eur. Phys. J. C (2013) 73:2530

Table 4 Summary of the 2D simultaneous top mass and α_s determination with a threshold scan at ILC for 10 points with a total integrated luminosity of 100 fb⁻¹. Event selection and background rejection from CLIC_ILD is used

1S top mass and α_s combined 2D fit

m_t stat. error	27 MeV
m_t theory syst. (1 %/3 %)	5 MeV/9 MeV
α_s stat. error	0.0008
α_s theory syst. (1 %/3 %)	0.0007/0.0022

Conditions of our setup

- Systematic uncertainties are not considered.
- We use the bkg yields of 352 GeV. But the energy that we use ranges from 340 to 346 GeV, where there will be more background events than 352GeV.
- The LS of CEPC is better than others.

Investigate on 'Best Point'

- There exists a 'best point' for this method.
- 2 problems:
 - We should validate if 1 point scheme has the smallest error.
 - And how can we use this method to determine our scheme?

Exhaustion on 4 sqrts scheme

- Total lumi = 100
- $\sqrt{s} = \{342, 342.5, 343, 343.5\}$
- Calculate the error of all possible lumi ratio and sequence them
- 286 lumi combinations in total
 - List from low error to high error
 - Top 30 are listed
- Conclusion: 343GeV is the best point.

lumi ratio= {0, 0, 100, 0}, err= 0.0109375 lumi ratio= {0, 10, 90, 0}, err= 0.0110801 lumi ratio= {0, 0, 90, 10}, err= 0.0110962 lumi ratio= {0, 0, 80, 20}, err= 0.0114375 err= 0.0114375 lumi ratio= {0, 10, 80, 10}, lumi ratio= {0, 20, 80, 0}, err= 0.0114375 lumi ratio= {10, 0, 90, 0}, err= 0.0114375 lumi ratio= {0, 0, 70, 30}, err= 0.0114902 lumi ratio= {0, 10, 70, 20}, err= 0.0114979 lumi ratio= {10, 0, 80, 10}, err= 0.0115028 lumi ratio= {10, 10, 80, 0}, err= 0.0115098 lumi ratio= {0, 20, 70, 10}, err= 0.0115167 lumi ratio= {0, 10, 60, 30}, err= 0.0115625 lumi ratio= {0, 20, 60, 20}, err= 0.0115625 lumi ratio= {10, 0, 70, 20}, err= 0.0115625 lumi ratio= {10, 10, 70, 10}, err= 0.0115625 lumi ratio= {0, 30, 70, 0}, err= 0.0115684 lumi ratio= {0, 0, 60, 40}, err= 0.0115903 err= 0.01175 lumi ratio= {0, 30, 60, 10}, lumi ratio= {0, 40, 60, 0}, err= 0.01175 lumi ratio= {10, 20, 70, 0}, err= 0.01175 lumi ratio= {20, 0, 80, 0}, err= 0.01175 lumi ratio= {10, 0, 60, 30}, err= 0.0118866 lumi ratio= {0, 0, 50, 50}, err= 0.0119141 lumi ratio= {0, 10, 50, 40}, err= 0.0119141 lumi ratio= {0, 20, 50, 30}, err= 0.0119375 lumi ratio= {10, 10, 60, 20}, err= 0.0119375 lumi ratio= {0, 30, 50, 20}, err= 0.0119844 lumi ratio= {20, 0, 70, 10}, err= 0.0119844 lumi ratio= {0, 40, 50, 10}, err= 0,0119873

err= 0.0119902

lumi ratio= {10, 20, 60, 10},

Proposal to find the Best Point

- Running at a low luminosity (1fb⁻¹)
- The discriminant value is much smaller than the one used for deriving $\sigma(m_t)$

sqrts	s = {340, 34	41,	342	2, 3	342	.5,	343	3, 343.	.5, 344.5, 345}
lum= 1, discriminant value = 1e-4									
lumi	<pre>ratio= {0,</pre>	0,	0,	0,	1,	0,	0,	0},	err= 0.00151562
lumi	<pre>ratio= {0,</pre>	0,	0,	1,	0,	0,	0,	0},	err= 0.00190234
lumi	<pre>ratio= {0,</pre>	0,	0,	0,	0,	1,	0,	0},	err= 0.0019375
lumi	ratio= {0,	0,	1,	0,	0,	0,	0,	0},	err= 0.0025625
lumi	ratio= {0,	1,	0,	0,	0,	0,	0,	0},	err= 0.0054375
lumi	ratio= {0,	0,	0,	0,	0,	0,	1,	0},	err= 0.00796094
lumi	<pre>ratio= {1,</pre>	0,	0,	0,	0,	0,	0,	0},	err= 0.00958594
lumi	ratio= {0,	0,	0,	0,	0,	0,	0,	1},	err= 0.0111875

- This figure is for {345}
- LS energy width=1GeV

25

2021/8/25

Summary & Next

- Summary:
 - The uncertainty of this method is tightly related to our points selection scheme.
 - 1-point scheme has the best performance, if we have already found the best point.
 - We proposed to scan the point with low luminosity to identify the best point.
 - the method should be further investigated, considering the effects of systematics, etc.
 - We can scan some points in non-sensitive area (e.g. 320GeV) to do background study.
- Next:
 - 1. Width, $\alpha_{\rm s}$, and Yukawa coupling factor should be considered in the measurements.
 - 2. Theory uncertainty should be added.