Detector Requirements Analysis on the Pion-Kaon Separation

Zhiyang Yuan, Manqi Ruan, Qun Ouyang

Insitute of High Energy Physics

yuanzy@ihep.ac.cn

August 25, 2021

Introduction

- 2 Impact parameter for πK
- 3 Impact parameter and PID for reconstruction
- 4 PID(dEdx TOF) info for π, K, p
- **5** Δ dEdx, Δ TOF, Separation Power and Average Separation Power for π, K
- 6 dEdx resolution of Detectors
- Seperation power in Kinematic Space
 - Summary

Objective:

- To reconstruct long-lived C-hadrons with the fully charged final states $D^0 \rightarrow K\pi$, $\Lambda_c^+ \rightarrow pK\pi$, etc.
- To maximize the reconstruction efficiency and purity, distinguish the real signal and the combinatory background
- To scan the detector performance and give preferred working points. For objects with pion, kaon and/or proton in its decay product: **Performance** depends on
 - Momentum (fully charged final state)
 - Hadron separation, especially π, K separation
 - VTX reconstruction. (for heavy flavor hadrons)

Software: The software for **simulation** is **MOKKA** and **reconstruction** is **MARLIN**. Both of them are **Geant** based. MARLIN is a modular C++ reconstruction framework that takes in **LCIO data** and runs multiple processors with either default or user defined parameters, each deals with a specific part of reconstruction.

And the **main categories** are: hit reconstruction, track reconstruction and particle reconstruction.

Sample: A simulated sample of $e^+e^- \rightarrow Z \rightarrow q\bar{q}$ inclusive events at $\sqrt{s} = 91.2~GeV$.

Method: Use full Simulation validated fast simulation to quantify the dependence between the objective particle reconstruction performance (Max. Efficiency×Purity) and the intrinsic detector performance (VTX - impact parameter resolution, mass or momentum resolution, PID - separation power)

Figure: $Z \rightarrow q\bar{q}$ events, background: finally charged undecayed particles, signal: π, K from D^0 , impact parameter equal to 0 is set to 1e-10.

Zhiyang Yuan (IHEP)

Detector Requirements analysis

Theorem (Impact parameter)

$$\sqrt{D_0^2 + Z_0^2}$$
 (1)

where D_0 is the distance between the nearest point (X_0, Y_0, Z_0) of the track on the $r\phi$ plane and the reference point IP.

Selection Process for $D^0 \to K\pi$

Step 1: Calculate the nearest distance (D_0, Z_0) of the track and use Gaussian random number generator to mimic (D_0, Z_0) resolution. Set a primary cut to select the signal.

Selection Process for $D^0 ightarrow K\pi$

Step 2: If PID is hadron, use Gaussian distribution to generate random number for good PID resolution and Uniform distribution for bad.

Selection Process for $D^0 ightarrow K\pi$

Step 3: If the two particles after step 2 are K and π respectively, select those which satisfy certain constraints on mass error. 4-momentum is computed using two particles at the production vertex.

Impact parameter and PID for reconstruction

Selection Process for $D^0 \to K\pi$

Step 4: Optimization impact parameter's cut for maximizing $Effiency(\varepsilon) \times Purity(p)$.

Theorem (The parameterization of $\varepsilon \times p$)

$$0.87 imes (1 - e^{-0.19 imes S^{2.49}}) + S_0$$

(2)

Impact parameter and PID for reconstruction

$\sigma_{mass} = 2 \text{ MeV}, \sigma_{dEdx} = 5\%, \sigma_{TOF} = 100 \text{ ps}$				
constrain	cut	ε	p	$Max(\varepsilon \times p)$
Impact Para.	$10^{-3.5} < \sqrt{D_0^2 + Z_0^2} < 10^{1.0}$	0.917	0.463	0.425
Mass	1.855 < <i>Recomass</i> < 1.875	0.912	0.912	0.833
PID 3σ	$K: -2.31 < rac{l-l_K}{\sigma_l} < 1.77$	0.942	0.915	0.863

Zhiyang Yuan (IHEP)

Detector Requirements analysis

August 25, 2021 10 / 25

Impact parameter and PID for reconstruction

If both the ε and p of the D^0 reconstruction are required to be better than 90%, the requirement for (D_0, Z_0) resolution is $4 \mu m$ with the pion and kaon separation power equal to 3σ .

Figure: Surface distribution: $\varepsilon \times p$ as a function of dEdx & TOF resolution for π , K and (D_0, Z_0) resolution.

Zhiyang Yuan (IHEP)

Detector Concept

The outer radius (R_{in} and R_{out}) and drift length of the TPC are chosen as the boundary conditions to record the time of flight for particles π, K, p .

Figure: Preliminary layout of the tracking system of the CEPC baseline detector concept

Theorem (TOF in Z-direction Projection)

$$t_z = t_{total} = \frac{\Delta z}{\beta_z \gamma c},\tag{4}$$

where Δz equals to the difference of z_{in} and z_{out} , which are depended on the inner and outer radius of the TPC(R_{in} and R_{out}).

A circular helix of radius R, slope $R/tan\theta$ and central axis (A_x, A_y, A_z) of the particle VTX is 20 described by the following parametrization:

Theorem (Circular Helix)

Figure: Time of fight for π, K, p through the TPC chamber

$$x = R\cos\phi + A_x, y = R\sin\phi + A_y, z = \frac{R\phi}{\tan\theta} + A_z,$$
(5)

 $p = 2GeV \cos \theta = 0.5$

Figure: dEdx and TOF distribution for π , K, p with specific momentum and direction

The difference of dEdx and TOF between π and K is shown below:

Figure: Surface distribution: $\Delta dEdx \& \Delta TOF$ for π, K in kinematic space

 $p = 2GeV \cos \theta = 0.5$

Figure: Surface distribution: Separation Power as a function of dEdx & TOF resolution for π, K

Theorem (Separation Power for $\pi - K$)

$$S_{\pi K} = \sqrt{\frac{(I_{\pi} - I_{K})^{2}}{\sigma_{I_{\pi}}^{2} + \sigma_{I_{K}}^{2}} + \frac{(T_{\pi} - T_{K})^{2}}{\sigma_{T_{\pi}}^{2} + \sigma_{T_{K}}^{2}}} \quad (6)$$

where I(T) and $\sigma_I(\sigma_T)$ are the average dE/dx(TOF) measurement and the corresponding resolution.

In the ideal case assuming no degradation and σ_I and σ_T are in the range of [1 - 5%]and [10 - 80ps] respectively.

 $S_{\pi K}$ is estimated at the CEPC as a function of σ_I , σ_T , p and $cos\theta$.

Average Separation Power for $\pi - K$

The average separation power $\langle S \rangle$ versus σ_I and σ_T after integrating over the $\cos\theta$ and momentum dimension.

Theorem (The integral form)

$$\langle S_{\pi K} (\sigma_{I}, \sigma_{T}) \rangle = \frac{\int_{0}^{1} \int_{1}^{20} S_{\pi K} (\sigma_{I}, \sigma_{T}, p, \cos \theta) PDF(p, \cos \theta) dp d \cos \theta}{\int_{0}^{1} \int_{1}^{20} PDF(p, \cos \theta) dp d \cos \theta}$$

The integral form is rewritten into a summation form:

Theorem (The summation form)

$$\langle S_{\pi K} (\sigma_{I}, \sigma_{T}) \rangle = \frac{\sum \sum S_{\pi K} (\sigma_{I}, \sigma_{T}, p_{i}, \cos \theta_{j}) PDF (p_{i}, \cos \theta_{j}) \Delta p \Delta \cos \theta}{\int_{0}^{1} \int_{1}^{20} PDF(p, \cos \theta) dp d \cos \theta}$$
(8)

Zhiyang Yuan (IHEP)

Average Separation Power for $\pi - K$

Figure: Surface distribution: Average Separation Power as a function of dEdx & TOF resolution for π, K

Zhiyang Yuan (IHEP)

August 25, 2021 18 / 25

Average Separation Power for $\pi - K$

A preferred star point is given as the dEdx and TOF resolution for detectors.

Figure: All 3σ lines for different momentum integral range

Figure: Separation power with preferred detector working point in Kinematic Space

dEdx resolution for $\pi - K$

Theorem (The parameterization of σ_I)

$$\frac{\sigma_I}{I} = \frac{13.5}{n^{0.5} \cdot (h\rho)^{0.3}} \left[2.05 + 0.8(\beta\gamma)^{-0.3} \right] \\ \times \left[2.5 - 1.5(\cos\theta)^4 + 3.9(\cos\theta)^{10} \right]$$
(9)

Κ

 π

Zhiyang Yuan (IHEP)

Detector Requirements analysis

August 25, 2021 20 / 25

Seperation Power in Kinematic Space

Use *dEdx* without *TOF*

Use *dEdx* with *TOF*

Figure: Separation Power in kinematic space for π , K wi/wo TOF

Summary

To identify charged Kaon(hadrons) up to 20 GeV

VTX: reconstructed parent mass or momentum and impact parameter PID: dEdx and TOF

Preliminary Conclusion:

If both the ε and p of the D^0 reconstruction are required to be better than 90%, the requirement for (D_0, Z_0) resolution is $4 \,\mu m$ with the pion and kaon separation power equal to 3σ . Preferred Working Point: 3σ separation of $\pi - K$, corresponding to 3.2% for dE/dx resolution and 50 *ps* for TOF resolution, is appreciated. Detector Separation Power: The parameterization of resolution need be proved.

Next:

Optimize the reconstruction process.

Zhiyang Yuan (IHEP)

Thanks for your attention!

Backup

Zhiyang Yuan (IHEP)

Detector Requirements analysis

August 25, 2021 24 / 2

-

• • • • • • • •

2

- Vertex detector: the intrinsic resolution σ_{D0} in the absence of multiple scattering is 5 μm.
- Tracker: the intrinsic momentum resolution σ_{1/p_T} of the tracker is $2 \times 10^{-5} \text{ GeV}^{-1}$.
- **PID**: An expected pion/kaon separation better than three standard deviations.