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Ultimate Questions and Challenges in QCD

To understand our physical world, we have to understand QCD!
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Three pillars of EIC Physics:
® How does the spin of proton arise? (Spin puzzle)
® What are the emergent properties of dense gluon system?
® How does proton mass arise? Mass gap: million dollar question.

EICs: keys to unlocking these mysteries! Many opportunities will be in front of us!




Saturation Physics (Color Glass Condensate)

QCD matter at extremely high gluon density
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® Gluon density grows rapidly as x gets small.

® Many gluons with fixed size packed in a confined hadron, gluons overlap and recombine =
Non-linear QCD dynamics (BK/JIMWLK) = ultra-dense gluonic matter

® Multiple Scattering (MV model) + Small-x (high energy) evolution



A Tale of Two Gluon Distributions

Two gauge invariant TMD operator def. [Bomhof, Mulders and Pijlman, 06]
[Dominguez, Marquet, Xiao and Yuan, 11]
I. Weizsacker Williams distribution: conventional density
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II. Color Dipole gluon distributions:
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® Modified Universality for Gluon Distributions:

Inclusive Single Inc DIS dijet v Het dijet in pA
xGww X X v X v
xGpp v v X v v

v/ = Apppear. X => Do Not Appear.



https://inspirehep.net/literature/708985
https://inspirehep.net/literature/883101

Wilson Lines in Color Glass Condensate Formalism

Wilson line = multiple scatterings between fast moving quark and target dense gluons.
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The Wilson loop (color dipole) in McLerran—Venugopalan (MV) model
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e Dipole amplitude S® then produces the quark k7 spectrum via Fourier transform
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Forward hadron production in pA collisions

[Dumitru, Jalilian-Marian, 02] Inclusive forward hadron production in pA collisions
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® Need NLO correction! IR cutoff: [Dumitru, Hayashigaki, Jalilian-Marian, 06;
Altinoluk, Kovner 11] [Altinoluk, Armesto, Beuf, Kovner, Lublinsky, 14]; Full NLO
[Chirilli, BX and Yuan, 12]




NLO diagrams in the ¢ — q channel

[Chirilli, BX and Yuan, 12]

A %m% 0

® Take into account real (top) and virtual (bottom) diagrams together!
® Multiple interactions inside the grey blobs!

® Integrate over gluon phase space =>Divergences!.




Factorization for single inclusive hadron productions

Factorization for the p + A — H + X process [Chirilli, BX and Yuan, 12]
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Rapidity Divergence Collinear Divergence (P) Collinear Divergence (F)

Include all real and virtual graphs in all channels ¢ — ¢, ¢ — g, ¢ — ¢q(¢) and g — g.
1. collinear to the target nucleus; = BK evolution for UGD F (k| ).
2. collinear to the initial quark; = DGLAP evolution for PDFs

3. collinear to the final quark. = DGLAP evolution for FFs.




Hard Factor of the g — g channel
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Numerical implementation of the NLO result

Single inclusive hadron production up to NLO

do = /Xfa(x)®Da(Z)®f3g(kL)®H(0)
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Consistent implementation should include all the NLO a corrections.

NLO parton distributions. (MSTW or CTEQ)

NLO fragmentation function. (DSS or others.)

Use NLO hard factors. Partially by [Albacete, Dumitru, Fujii, Nara, 12]

Use the one-loop approximation for the running coupling

rcBK evolution equation for the dipole gluon distribution [Balitsky, Chirilli, 08;
Kovchegov, Weigert, 07]. Full NLO BK evolution not available.

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]




Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]
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e Agree with data for pr < Qy(y), and reduced scale dependence, no K factor.
® For more forward rapidity, the agreement gets better and better.




Numerical implementation of the NLO result

Saturation physics at One Loop Order (SOLO). [Stasto, Xiao, Zaslavsky, 13]

BRAHMS 5 =2.2,3.2

® The abrupt drop at NLO when pr > O, was surprising and puzzling.

® Fixed order calculation in field theories is not guaranteed to be positive.




Extending the applicability of CGC calculation

Some thoughts:

Towards a more complete framework. [Altinoluk, Armesto, Beuf, Kovner, Lublinsky,
14; Kang, Vitev, Xing, 14, Ducloue, Lappi and Zhu, 16, 17; lancu, Mueller,
Triantafyllopoulos, 16; Liu, Ma, Chao, 19; Kang, Liu, 19; Kang, Liu, Liu, 20;]

To solve this problem, needs to find a solution within our current factorization to
extend the applicability of CGC.

More than just negativity problem. Need to work reliably (describe data) from RHIC
to LHC, low pr to high pr.

Additional consideration: solution needs to be easy to be implemented numerically
due to limited computing resources.

A lot of logs occur in pQCD loop-calculations: DGLAP, small-x, threshold, Sudakov.

Breakdown of pQCD expansion often happens due to the appearance of logs in
certain phase spaces.
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NLO hadron productions in pA collisions: An Odyssey

[Watanabe, Xiao, Yuan, Zaslavsky, 15] Rapidity subtraction!

® Including the kinematical constraints. (Originally
assume the limit s — o0)
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Threshold resummation in the saturation formalism

Threshold resummation: Sudakov soft gluon part and plus-function part.
® In(1 —x,) and In ki /A? in the large k| region (k; > Q) near threshold
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® Remarkable similarities between the threshold resummation in CGC formalism (fixed

kr) and that in SCET/Becher, Neubert, 06].
e The forward threshold jet function A(u?, A2, z) satisfies
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Numerical challenges

[Watanabe, Xiao, Yuan, Zaslavsky, 15; Shi, Wang, Wei, Xiao, in preparation]
® Numerical integration (8-d in total) is notoriously hard in x| space. Go to k, space.
® A couple of identities in Fouier transformations
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® Introduce a semi-hard scale A?> = max[(1 — £)k% , Q?] which is analogous to the
intermediate scale ,uiz in SCET [Becher, Neubert, 06]. (Sudakov soft part!)

e 42 and A? dependences cancel order by order in terms of o'! At fixed order, need to
choose the “natural" values for them.




Applicability of CGC and Initial Condition

Kinematics: 7 = pf/?y <landx, = pLe - 102
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Small-x gluon: [Albacete, Armesto, Milhano, Quiroga-Arias and Salgado, 11]

Initial condition set by data x, = 2 ;\e/; < 1072 + running coupling BK evolution.

. . . o PT_@y . — PTe_y 2
Kinematic constraint 7/z = £ 7%= 1 and CGC constraint x, = == 7 = 107=.

Applicability of CGC: rapidity y sufficiently large and pr = k_ z not too large.



https://inspirehep.net/literature/882460

Gluon Radiation and Phase Space

At threshold: radiated gluon has to be soft! 7 = p\T/e; =xp§z < landx, = e <1072
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* Introduce an auxiliary semi-hard scale A> ~ (1 — )k3 ~ (1 — 7)p}.

e Saddle point approximation yields the same result for fixed coupling.
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e For running coupling, A> = AZQCD [



Preliminary Results

[Xiao, Yuan, 18; Shi, Wang, Wei, Xiao, in preparation]
do = /Xfa(x, 1) ® Da(z, ) @ Fat (k1) @ H® @ A1, A) @ Ssua (e, A)
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Natural choice of A% Competition between saturation and Sudakov A ~ ¢o/r .
Two implementation methods give similar numerical results.

A(p, ) and Ssuq (g2, A) satisfy collinear and Sudakov (soft) RGEs.

A(u, A) represents backwards DGLAP evolution. A(u, pu) =1




Preliminary Results for pA spectra
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Preliminary Results for middle rapidity pA and pp spectra
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Preliminary Results

o pPh,3.0<y <35k
LO

o pPbh, 3.5 <y < 4.0
== O

o pPb, 4.0 <y <43
LO

o pPbh, 20 <y <25[8, |opPh 25<y<30s
= LO == LO

® New LHCb data:
LHCb-PAPER-2021-015

® Links to preliminary data:

» DIS2021
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https://indico.bnl.gov/event/9726/contributions/45494/attachments/33676/54197/DIS2021_oboente.pdf
https://cds.cern.ch/record/2777279/files/EPSHEP2021_oboente.pdf
http://cdsweb.cern.ch/record/2775323/files/qcd_2021_montpellier_v2.pdf

Summary
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Odyssey in NLO hadron productions in pA collisions in CGC.
Towards the precision test of saturation physics (CGC) at RHIC and LHC.

Extension to larger k; region and QCD threshold resummation.
Low-k | < saturation; High-k; < pQCD + Resummation.

Gluon saturation could be the next discovery at the LHC and future EIC.
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