Continuum QCD for DAs and DFs

pion/kaon as an example

leichang@nankai.edu.cn

Nankai University

Workshop on Hadron Structure at High-Energy, High-Luminosity Facilities 2021/10/27

Breaking News!

Within uncertainties, there is pointwise agreement between the two results on the entire depicted domains

- Val[Lat] Sufian *et al.*, arXiv: 1901.03921 (valence DF: using lattice-calculated matrix element obtained through spatially separated current-current correlations in coordinate space)
- Glue/5[Lat] Fan *et al.*, arXiv: 2104.06372 (Glue DF: using pseudo-PDF approach(Balitsky, Morris and Radyushkin,arXiv:1910.13963))
- CSM see short review: LC and C.D.Roberts, *Chin.Phys.Lett.38(2021)081101.*
- Lattice methods: moments(...) LaMET(Ji) good lattice cross section(Qiu...) pseudo-PDF(Radyushkin...)

Continuum QCD approach A long story from 2013 I will focus on "HOW"

Describe quark-antiquark bound-state

$$\Theta_0 = \beta(\alpha) \frac{1}{4} G^a_{\mu\nu} G^a_{\mu\nu}.$$

Trace anomaly

- All renormalisable fourdimensional theories possess a trace anomaly;
- The size of the trace anomaly in QED must be great deal smaller than that in QCD.

Field theory Successful:

- Nonrelativistic quantum mechanics to handle bound state;
- Perturbation theory to handle relativistic effects

Field theory not Successful yet:

- Growth of the running coupling constant in the infrared region;
- Confinement;
- Dynamical Chiral Symmetry Breaking;
- Possible nontrivial vacuum structure in hadron

Describe quark-antiquark bound-state(incomplete)

Truncation(Put Physics at Right Place)

✓ One Way: CJT approach->2PI, 3PI,...

 $\Gamma[S_{\rm F}, A] = i \operatorname{Tr} \operatorname{Ln} S_{\rm F} - \operatorname{Tr}(i \not D S_{\rm F}) + i^{-1} \mathcal{K}_{\rm 2PI}[S_{\rm F}]$

(a)
$$\kappa_{2P1}^{(l)}$$

(b) $\kappa_{2P1}^{(2)}$
(c) $\kappa_{2P1}^{(2)}$
(c) $\kappa_{2P1}^{(2)}$
(c) $\kappa_{2P1}^{(2)}$

✓ Our Way: Minding the quark-gluon vertex

How to construct quark-gluon vertex nonperturbatively? Symmetry!

Sol

7

• Gauge invariance

$$\Gamma_{v}(p+k,p) = \frac{\partial}{\partial p_{v}} \int_{0}^{1} d\alpha S^{-1}(p+\alpha k) \xrightarrow{k} \frac{\delta \Gamma_{v}}{\delta S} = \Lambda_{v}^{\alpha} = \frac{\partial}{\partial p_{v}} \int_{0}^{1} d\alpha \Gamma^{\alpha}(p+k-\alpha q, p-\alpha q)$$
• Gauge derivation(H.Haberzettl, PRD99(2019)016022)
• Gauge derivation(H.Haberzettl, PRD99(2019)016022)

$$\Gamma_{\mu}(p',p) = \left\{ \frac{i\gamma \cdot p'A(p'^{2}) + A(p^{2})i\gamma \cdot p}{2} + B(p^{2}) \right\}_{\mu}^{s}$$
Solution-1
$$= \gamma_{\mu} \frac{A(p'^{2}) + A(p^{2})}{2}$$

$$-i(p'+p)_{\mu} \left\{ \frac{1}{2}i\gamma \cdot (p'+p)\Delta_{A} + \Delta_{B} \right\} ($$
F contral the strength of transverse vertex
$$I = Chang (NKU)$$

$$(1 - F)D^{S} + FD^{D}$$

$$Lc, Yu-xin Liu and C.D.Roberts, PRL106(2011)072001$$

$$Lc, Yu-xin Liu and C.D.Roberts, PRL106(2011)072001$$

$$Lc, Yu-xin Liu and C.D.Roberts, PRL106(2011)072001$$

Effective interaction of QCD

$$\Sigma_f(p) = \frac{4}{3} Z_2 \int_{dq}^{\Lambda} 4\pi \widehat{d}(k^2) T_{\mu\nu}(k) \gamma_\mu S_f(q) \widehat{\Gamma}_\nu^f(p,q)$$

Need...

$$= \widetilde{\alpha}(k^2)\mathcal{D}(k^2)$$

$$\gamma_m \pi$$

 $\widetilde{\alpha}(k^2) = \frac{\gamma_m \pi}{\ln\left[\frac{\mathcal{K}^2(k^2)}{\Lambda_{\rm QCD}^2}\right]} , \qquad (10)$

where n_f accounts for the number of active quark flavors (within the UV domain) and $\gamma_m = 4/\beta_0$, $\beta_0 = 11 - (2/3)n_f$; and the interpolation function

 $\widehat{d}(k^2)$

$$\mathcal{K}^2(y) = \frac{a_0^2 + a_1 y + y^2}{b_0 + y} \tag{11}$$

The running coupling alters at m_G so that modes with k²<m² are screened from interactions and theory enters a practically conformal domain.

0.5

 ${\cal D}$ is a RGI function behaving in both the far-infrared and -ultraviolet as the propagator of a free massive boson.

Effective interaction of QCD

$$\Sigma_f(p) = \frac{4}{3} Z_2 \int_{dq}^{\Lambda} 4\pi \widehat{d}(k^2) T_{\mu\nu}(k) \gamma_\mu S_f(q) \widehat{\Gamma}_\nu^f(p,q)$$

need

$$\widehat{d}(k^2) = \widetilde{\alpha}(k^2)\mathcal{D}(k^2)$$
$$\widetilde{\alpha}(k^2) = \frac{\gamma_m \pi}{\left[\sum_{k=1}^{\infty} \frac{\gamma_m \pi}{2}\right]},$$

 $\widetilde{\alpha}(k^2) = \frac{\gamma_m \pi}{\ln\left[\frac{\mathcal{K}^2(k^2)}{\Lambda_{\rm QCD}^2}\right]} , \qquad (10)$

where n_f accounts for the number of active quark flavors (within the UV domain) and $\gamma_m = 4/\beta_0$, $\beta_0 = 11 - (2/3)n_f$; and the interpolation function

$$\mathcal{K}^2(y) = \frac{a_0^2 + a_1 y + y^2}{b_0 + y} \tag{11}$$

Normalized the equations at m_G !

m_G is the natrual hadronic scale

 \mathcal{D} is a RGI function behaving in both the far-infrared and -ultraviolet as the propagator of a free massive boson.

"Constituent" quarks

- In the chiral limit, the perturbative massless quark obtain a large infrared mass through the interactions of gluon;
- M₀ is about m_p/3 and runs as a logarithm-corrected 1/k² power-law in the ultraviolet region;
- The strong interaction of a quark with its (gluon) surrounding gives rise to a "constituent" quark with effective mass M₀;
- Note that $M_0 \sim m_G$!
- This consistuent quark has the finite size(B. Povh and J. Hufner, PLB245(1990)653) and finite magnetic moment;

Dressed-Quark Anomalous Magnetic Moments

Lei Chang, Yu-Xin Liu, and Craig D. Roberts Phys. Rev. Lett. **106**, 072001 (2011) - Published 16 February 2011

Maris, Roberts and Tandy, Phys. Lett. B420(1998) 267-273

Pion's Bethe-Salpeter amplitude Solution of the Bethe-Salpeter equation

$$\Gamma_{\pi^{j}}(k;P) = \tau^{\pi^{j}} \gamma_{5} \left[iE_{\pi}(k;P) + \gamma \cdot PF_{\pi}(k;P) + \gamma \cdot k \, k \cdot P \, G_{\pi}(k;P) + \sigma_{\mu\nu} \, k_{\mu} P_{\nu} \, H_{\pi}(k;P) \right]$$

Dressed-quark propagator

$$S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)}$$

> Axial-vector Ward-Takahashi identity entails(chiral limit)

$$f_{\pi}E(k;P|P^{2}=0) = B(k^{2}) + (k \cdot P)^{2} \frac{d^{2}B(k^{2})}{d^{2}k^{2}} + \dots$$

Expansion $k \cdot P$ series is crucial for the shape of DAs and DFs

BSA \propto Lei Chang (NKU) BSA \propto Lei Chang (NKU) BSA \propto k_{i}^{r} k_{i}^{r}

Distribution Amplitude(truncation independent) 初は大学

$$f_{\pi} \varphi_{\pi}(x;\mu) = Z_2 \operatorname{tr}_{\operatorname{CD}} \int_{dk}^{\Lambda} \delta(n \cdot k - x \, n \cdot P) \, \gamma_5 \gamma \cdot n \, \chi_{\pi}(k;P) \,,$$

Calculate moments; Restruct DA from moments! $\langle x^m \rangle := \int_0^1 dx \, x^m \varphi_\pi(x)$ $\langle x^m \rangle = \frac{N_c Z_2}{f_\pi (n \cdot P)^{m+1}} \operatorname{tr}_D \int_{dk}^A (n \cdot k)^m \, \gamma_5 \gamma \cdot n \, \chi_\pi(k; P) \, .$

Arbitrary many moments is necessary!

DA moments-----Method-1: Nakanishi-type representation

Imaging dynamical chiral symmetry breaking: pion wave function on the light front. LC, et al., PRL110(2013)132001

✓ Quark propagator

$$S(p) = \sum_{j=1}^{n_p} \left(\frac{z_j}{i \not p + m_j} + \frac{z_j^{\star}}{i \not p + m_j^{\star}} \right)$$

✓ Bethe-Salpeter amplitude

Zehao Zhu, et al., PRD103(2021)034005

$$\mathcal{F}_{\sigma}(q;P) = \int_{-1}^{1} d\alpha \, \int_{0}^{\infty} d\beta \, \sum_{\gamma}^{n_{t}} \frac{\hat{\rho}_{\gamma}(\alpha,\beta)}{(q^{2} + \alpha q \cdot P + \beta_{0} + \beta)^{n_{\gamma}}}$$

 $\hat{\rho}_{\gamma}(\alpha,\beta) = \rho_{\gamma}(\alpha) \, \delta(\beta + \beta_0 - \Lambda_{\gamma}^2)$

Standard Feynman integrals familiar from perturbation theory

Brute force+SMP extrapolation

Leading-twist parton distribution amplitudes of S-wave heavy-qukaonia. Minghui Ding, *et al., PLB753*(2016)330; Symmetry, symmetry breaking, and pion parton distributions. Minghui Ding, *et al.*, PRD101(2020)054014.

$$d(k^2r^2) = 1/(1+k^2r^2)^{m/2}$$

$$M_S(z) = \frac{a_0 + a_1 z + a_2 z^2}{a_0 + b_1 z + b_2 z^2 + b_3 z^3},$$

Maximum Entropy Method

Bayesian extraction of PDA from BS wave function. Fei Gao, et al., PLB770(2016)551.

basis is Bayes' theorem in probability theory [12], which states the probability of an event "A", given that a condition "B" is satisfied:

$$P(A|B) = \frac{P(B|A)P(A)}{P(B)},$$
(4)

DA shape-----Minding $\frac{d\rho(z)}{d\alpha} = \rho_{\gamma}(z)$

- 1. Imaging dynamical chiral symmetry breaking: pion wave function on the light front. LC, et al., PRL110(2013)132001;
- 2. Pion valence-quark parton distribution.

LC, A.W.Thomas, PLB749(2015)547;

- 3. A perspective on Dyson-Schwinger equation: toy model of Pion. LC, EPJ Web Conf.113(2016)05001;
- 4. Pion and kaon valence-quark parton quasidistribution. Shu-Sheng Xu, *et al.*, PRD97(2018) 094014;
- 5. Revealing pion and kaon structure via generalised parton distributions. Khepani Raya, *et al.*, arXiv:2109.11686.

Imagine Pion global picture

- The gluon has been hidden in the constituent quarks;
- At hadronic scale, the pion is constructed by two constituent quarks which are overlapped largely;
- Valence DA(x) is symmetric function under $x \rightarrow 1 x$
- The screening of interaction below the hadronic scale indicates the valence DA is flat on the middle of x domain
- The QCD interaction in the ultraviolet region 1/k² guarantee (1-x)^{beta>1} behavior near the endpoints

Imagine Pion global picture

- The gluon has been hidden in the constituent quarks;
- At hadronic scale, the pion is constructed by two constituent quarks which are overlapped largely;
- Valence DA(x) is symmetric function under $x \rightarrow 1 x$
- The screening of interaction below the hadronic scale indicates the valence DA is flat on the middle of x domain
- The QCD interaction in the ultraviolet region 1/k² guarantee (1-x)^{beta>1} behavior near the endpoints

A practical way to calculate DF

LC, et al., PLB737(2014)23, arXiv: 1406.5450

Beyond Rainbow-Ladder truncation???

Lei Chang (NKU)

- Inflection points
- Red line: running gluon propagagor
- Blue line: vector part of propagator
- Black line: BSW function

$$\leq \frac{1}{\sqrt{2}} \mathbf{m}_g \sim m_G \sim \zeta_H$$

P

B'

A practical way to calculate DF

LC, et al., PLB737(2014)23, arXiv: 1406.5450

A practical way to calculate DF

LC, et al., PLB737(2014)23, arXiv: 1406.5450

Beyond Rainbow-Ladder truncation

$$arphi_H(x;\zeta) \propto \int^{\zeta} d^2 k_{\perp} \,\psi_H(x,\mathbf{k}_{\perp};P),$$
 $q^H(x;\zeta) \propto \int^{\zeta} d^2 k_{\perp} \,|\psi_H(x,\mathbf{k}_{\perp};P)|^2,$

at Hadronic Scale DF(x) = DA(x)² !

Evolution and Probing glue

- The gluon has been hidden in the constituent quarks;
- At hadronic scale, the pion is constructed by two constituent quarks which are overlapped largely;
- Let gluon show up!

DGLAP with the effective charge

The sea quarks can arise from gluon splitting, xS(x) is expected to follow the trend of xg(x).

The scale dependence of momentum fractions

Mankai University

Pure valence(no gluon no sea) at hadronic scale picture

u $ar{d}$

Valence quarks carry all the momentum
 the scale dependence of momentum
 fractions does not depend on the details of
 valence distribution at hadronic scale
 a closed equation can be derived

$$\begin{split} \langle 2x(\zeta_{\rm ex}) \rangle_q &= \exp\left(-\frac{8}{9\pi}S\left(\zeta_H, \zeta_{\rm ex}\right)\right), \\ \langle x(\zeta_{\rm ex}) \rangle_{\rm sea} &= \frac{3}{7} + \frac{4}{7}\langle 2x(\zeta_{\rm ex}) \rangle_q^{7/4} - \langle 2x(\zeta_{\rm ex}) \rangle_q, \\ \langle x(\zeta_{\rm ex}) \rangle_{\rm glue} &= \frac{4}{7}\left(1 - \langle 2x(\zeta_{\rm ex}) \rangle_q^{7/4}\right), \end{split}$$

with

$$S(\zeta_H, \zeta_{\text{ex}}) = \int_{t(\zeta_H)}^{t(\zeta_{\text{ex}})} dt(\zeta) \,\widetilde{\alpha}(t(\zeta))$$

and $t(\zeta) = \ln(\zeta^2 / \Lambda_{\text{QCD}}^2).$

Momentum evolution(valence quarks and gluon)

Breaking News!

Within uncertainties, there is pointwise agreement between the two results on the entire depicted domains

- Val[Lat] Sufian *et al.*, arXiv: 1901.03921 (valence DF: using lattice-calculated matrix element obtained through spatially separated current-current correlations in coordinate space)
- Glue/5[Lat] Fan *et al.*, arXiv: 2104.06372 (Glue DF: using pseudo-PDF approach(Balitsky, Morris and Radyushkin,arXiv:1910.13963))
- CSM see short review: LC and C.D.Roberts, *Chin.Phys.Lett.38(2021)081101.*
- Lattice methods: moments(...) LaMET(Ji) good lattice cross section(Qiu) pseudo-PDF(Radyushkin)

Continuum QCD approach A long story from 2013 I will focus on "HOW"