Hidden-heavy and doubly-heavy molecular tetraquarks

in a quasipotential Bethe-Salpeter equation approach

Jun He

Nanjing Normal University

Collaborators: Zuo-Ming Ding, Han-Yu Jiang, Dan Song
Based on: Eur.Phys.J.C 80 (2020) 12, 1179, Eur.Phys.J.C 81 (2021) 8, 732

Outline

- Introduction
- Hidden(doubly)-heavy tetraquark without strangeness
from $D^{(*)} \bar{D}^{(*)} / B^{(*)} \bar{B}^{(*)}$ and $D^{(*)} D^{(*)} / B^{(*)} B^{(*)}$ interactions
- Hidden(doubly)-heavy tetraquark with strangeness
from $D_{(s)}^{(*)} \bar{D}_{s}^{(*)} / B_{(s)}^{(*)} \bar{B}_{s}^{(*)}$ and $D_{(s)}^{(*)} D_{s}^{(*)} / B_{(s)}^{(*)} B_{s}^{(*)}$ interactions
- Summary

Hadronic molecular state

Exotic hadrons beyond conventional quark model

- States with exotic quantum numbers

$$
\text { Meson : } 0^{---}, 0^{+-}, 1^{-+}, 2^{+-}, \ldots \ldots
$$

Charged charmonium-like and bottomonium-like states

- States with mass different from predictions in conventional QM
Conventional hadrons

A typical spectrum supporting molecular states: LHCb Pentaquarks

$\boldsymbol{P}_{\boldsymbol{c}}$ and $\boldsymbol{P}_{c s}$ as molecular states

P_{c}

$P_{c s}$

P_{b}

JH, Chen, EPJC79 (2019)887

Zhu, Song, JH, PRD103(2021)074007

Zhu, Kong, Liu, JH,EPJC80(2020)1016

Possible molecular tetraquarks

Z_{c} and Z_{b} states and relevant thresholds

Theoretical work in molecular state picture

Tornqvist, Phys.Lett.B 590 (2004) 209-215
Liu, et al. Eur.Phys.J.C 56 (2008) 63-73
Wang, Huang, Eur.Phys.J.C 74 (2014) 5, 2891
Aceti, et al., Phys.Rev.D 90 (2014) 1, 016003

Zhang, Phys.Rev.D 87 (2013) 11, 116004
Sun, et al., Phys.Rev.D 84 (2011) 054002
Chen etl al. Phys.Rev.D 92 (2015) 5, 054002
Aceti, et al., Eur.Phys.J.A 50 (2014) 103

Our previous works about the molecular states from $B \bar{B}^{*}, D \bar{D}^{*}$, and $K \bar{K}^{*}$ Interaction
Sun, JH, Liu, Luo, Zhu, Phys. Rev. D84 (2011) 054002 JH, Phys.Rev. D92 (2015) 034004, Phys.Rev. D90 (2014) 076008 Lu, JH, Euro. Phys. J. A52(2016) 359

The experimentally observed states can be reproduced.
The results in different sectors are similar.
For doubly-heavy systems $B B^{*}, D D^{*}$, the theoretical frame are almost the same.

Theoretically, the doubly heavy state can be obtained by replacing one constituent particle by its antiparticle.

	$B \bar{B}^{*}(b \bar{b} q \bar{q})$		$D \bar{D}^{*}(c \bar{c} q \bar{q})$		$K \bar{K}^{*}(s \bar{s} q \bar{q})$	
$I^{G}\left(J^{P C}\right)$	Theo.	Exp.	Theo.	Exp.	Theo.	Exp.
$0^{-}\left(0^{--}\right)$						
$0^{+}\left(0^{-+}\right)$						
$0^{-}\left(1^{--}\right)$						
$0^{+}\left(1^{-+}\right)$						
$0^{-}\left(1^{+-}\right)$	\checkmark	?	\checkmark	?	\checkmark	$h_{1}(1380)$
$0^{+}\left(1^{++}\right)$	\checkmark	?	\checkmark	X(3872)	\checkmark	$f_{1}(1285)$
$1^{+}\left(0^{-}\right)$						
$1^{-}\left(0^{-}\right)$						
$1^{+}\left(1^{-}\right)$						
$1^{-}\left(1^{-}\right)$						
$1^{+}\left(1^{+}\right)$	\checkmark	$Z_{b}(10610)$	\checkmark	$Z_{C}(3900)$	\checkmark	$b_{1}(1235)$
$1^{-}\left(1^{+}\right)$						

$$
B B^{*} ? \quad D D^{*} ?
$$

Existence of the doubly heavy states predicted in the same model can be expected.

Observations of $\Xi_{c c}^{++}$and $T_{c c}^{+}$

- Because a charm quark pair can be created at the same time, a hidden-charm molecular state can be formed with other light quarks easily.
- However, two charm quarks in doubly-charm molecular states are from two charm quark pairs.
- Compared with the hidden-charm states, the doubly-charm states should be difficult to be produced in experiment.

arXiv:2109.01038
- Recently the doubly baryons $\Xi_{c c}^{++}$have been observed at LHCb.
- It suggest that the experimental observation of the doubly charm molecular state becomes possible!
- Very recently, the Tcc+ was observed. It is soon explained as a DD* molecular state.

Theoretical works

$B^{(*)} B^{(*)}$ interaction was studied by solving the Schödinger equation Barnes, N. Black, D.J. Dean, E.S. Swanson, Phys. Rev. C 60, 045202 (1999).

Coupled-channel analysis of the possible $D^{(*)} D^{(*)}, B^{(*)} B^{(*)}, D^{(*)} B^{(*)}$ molecular states. N. Li, Z.F. Sun, X. Liu, S.L. Zhu, Phys. Rev. D 88(11), 114008 (2013)
$D D$ and $B B$ interactions within heavy meson chiral effective field theory B. Wang, Z.W. Liu, X. Liu, Phys. Rev. D 99(3), 036007 (2019)
$D D^{*}$ potentials in chiral perturbation theory
H. Xu, B. Wang, Z.W. Liu, X. Liu, Phys. Rev. D 99(1), 014027 (2019)

Possible molecular states in $B^{(*)} B^{(*)}$ scatterings
M.T. Yu, Z.Y. Zhou, D.Y. Chen, Z. Xiao. Phys. Rev. D 101(7), 074027 (2020).

A survey of heavy-heavy hadronic molecules
Dong Guo, Zou, arXiv: 2108.02673

Hidden(doubly)-heavy tetraquark without strangeness from $\boldsymbol{D}^{(*)} \overline{\boldsymbol{D}}^{(*)} / \boldsymbol{B}^{(*)} \overline{\boldsymbol{B}}^{(*)}$ and $\boldsymbol{D}^{(*)} \boldsymbol{D}^{(*)} / \boldsymbol{B}^{(*)} \boldsymbol{B}^{(*)}$ interactions

One boson exchange model

Wave function

$$
\begin{aligned}
& \left|X_{D D^{*}}^{0}\right\rangle I=0=\frac{1}{2}\left[\left(\left|D^{*+} D^{-}\right\rangle+\left|D^{* 0} \bar{D}^{0}\right\rangle\right)+c\left(\left|D^{+} D^{*-}\right\rangle+\left|D^{0} \bar{D}^{* *}\right\rangle\right)\right], \quad\left|X_{D D^{0}}^{0}\right\rangle_{I=0}=\frac{1}{\sqrt{2}}\left(\left|D^{+} \bar{D}^{-}\right\rangle+\left|D^{0} \bar{D}^{0}\right\rangle\right), \quad\left|X_{D^{(*)}}^{+} D_{(*)}\right\rangle_{I=0}=\frac{1}{\sqrt{2}}\left(\left|D^{(*)+} D^{(*) 0}\right\rangle-\left|D^{(*) 0} D^{(*)+}\right\rangle\right), \\
& \left|X_{D \bar{D}^{*}}^{0}\right\rangle I=1=\frac{1}{2}\left[\left(\left|D^{*+} D^{-}\right\rangle-\left|D^{* 0} \bar{D}^{0}\right\rangle\right)+c\left(\left|D^{+} D^{*-}\right\rangle-\left|D^{0} \bar{D}^{*}\right\rangle\right)\right], \quad\left|X_{D D^{0}}^{0}\right\rangle_{I=1}=\frac{1}{\sqrt{2}}\left(\left|D^{+} \bar{D}^{-}\right\rangle-\left|D^{0} \bar{D}^{0}\right\rangle\right), \quad\left|X_{D^{(*)}}^{+} D^{(*)}\right\rangle=1=\frac{1}{\sqrt{2}}\left(\left|D^{(*)+} D^{(*) 0}\right\rangle+\left|D^{(*) 0} D^{(*)+}\right\rangle\right), \\
& \left|X_{D \bar{D}^{*}}^{+}\right\rangle\left|=1=\frac{1}{\sqrt{2}}\left(\left|D^{*+} \bar{D}^{0}\right\rangle+c\left|D^{+} \bar{D}^{* *}\right\rangle\right),\right. \\
& \left|X_{D \bar{D}^{*}}^{-}\right\rangle_{I=1}=\frac{1}{\sqrt{2}}\left(\left|D^{*-} \bar{D}^{0}\right\rangle+c\left|D^{-} \bar{D}^{* *}\right\rangle\right) \text {, } \\
& \left|X_{D \bar{D}}^{+}\right\rangle_{I=1}=\left|D^{+} \bar{D}^{0}\right\rangle, \\
& \left|X_{D^{(*)} D^{(*)}}^{0}\right\rangle_{l=1}=\left|D^{(*) 0} D^{(*) 0}\right\rangle, \\
& \text { (1) }\left|X_{D \bar{D}}^{-}\right\rangle_{I=1}=\left|D^{-} \bar{D}^{0}\right\rangle \text {. } \\
& \left|X_{D^{(*)}}^{++} D^{(*)}\right\rangle_{I=1}=\left|D^{(*)+} \bar{D}^{(*)+}\right\rangle .
\end{aligned}
$$

Lagrangian

with chiral and heavy quark symmetries

$$
\begin{aligned}
\mathcal{L}_{\mathcal{P} * \mathcal{P}^{*} \mathbb{P}}= & -i \frac{2 g}{f_{\pi}} \varepsilon_{\alpha \mu \nu \lambda} v^{\alpha} \mathcal{P}_{b}^{* \mu} \mathcal{P}_{a}^{* \lambda \dagger} \partial^{v} \mathbb{P}_{b a} \\
& +i \frac{2 g}{f_{\pi}} \varepsilon_{\alpha \mu \nu \lambda} v^{\alpha} \widetilde{\mathcal{P}}_{a}^{* \mu \dagger} \widetilde{\mathcal{P}}_{b}^{* \lambda} \partial^{\nu} \mathbb{P}_{a b} \\
\mathcal{L}_{\mathcal{P}^{*} \mathcal{P}_{\mathbb{P}}}= & -\frac{2 g}{f_{\pi}}\left(\mathcal{P}_{b} \mathcal{P}_{a \lambda}^{* \dagger}+\mathcal{P}_{b \lambda}^{*} \mathcal{P}_{a}^{\dagger}\right) \partial^{\lambda} \mathbb{P}_{b a} \\
& +\frac{2 g}{f_{\pi}}\left(\widetilde{\mathcal{P}}_{a \lambda}^{* \dagger} \widetilde{\mathcal{P}}_{b}+\widetilde{\mathcal{P}}_{a}^{\dagger} \widetilde{\mathcal{P}}_{b \lambda}^{*}\right) \partial^{\lambda} \mathbb{P}_{a b}
\end{aligned}
$$

$$
\mathcal{L}_{\mathcal{P} \mathcal{P V}}=-\sqrt{2} \beta g_{V} \mathcal{P}_{b} \mathcal{P}_{a}^{\dagger} v \cdot \mathbb{V}_{b a}+\sqrt{2} \beta g_{V} \widetilde{\mathcal{P}}_{a}^{\dagger} \widetilde{\mathcal{P}}_{b} v \cdot \mathbb{V}_{a b}
$$

$$
\mathcal{L}_{\mathcal{P}^{*} \mathcal{P} \mathbb{V}}=-2 \sqrt{2} \lambda g_{V} v^{\lambda} \varepsilon_{\lambda \mu \alpha \beta}\left(\mathcal{P}_{b} \mathcal{P}_{a}^{* \mu \dagger}+\mathcal{P}_{b}^{* \mu} \mathcal{P}_{a}^{\dagger}\right)\left(\partial^{\alpha} \mathbb{V}^{\beta}\right)_{b a}
$$

$$
-2 \sqrt{2} \lambda g_{V} v^{\lambda} \varepsilon_{\lambda \mu \alpha \beta}\left(\widetilde{\mathcal{P}}_{a}^{* \mu \dagger} \widetilde{\mathcal{P}}_{b}+\widetilde{\mathcal{P}}_{a}^{\dagger} \widetilde{\mathcal{P}}_{b}^{* \mu}\right)\left(\partial^{\alpha} \mathbb{V}^{\beta}\right)_{a b}
$$

$$
\left.\begin{array}{rl}
\mathcal{L}_{D_{(s)}^{*} \bar{D}_{(s)}^{*} J / \psi}= & -i g_{D_{(s)}^{*} D_{(s)}^{*} \psi}\left[\psi \cdot \bar{D}^{*} \overleftrightarrow{\partial} \cdot D^{*}\right. \\
& \left.\left.-\psi^{\mu} \bar{D}^{*} \cdot \overleftrightarrow{\partial}^{\mu} D^{*}+\psi^{\mu} \bar{D}^{*} \cdot \overleftrightarrow{\partial} D^{* \mu}\right)\right] \\
\mathcal{L}_{D_{(s)}^{*} \bar{D}_{(s)} J / \psi}= & g_{D_{(s)}^{*} D_{(s)} \psi} \epsilon_{\beta \mu \alpha \tau} \partial^{\beta} \psi^{\mu}\left(\bar{D}^{\overleftrightarrow{\partial}}{ }^{\tau} D^{* \alpha}\right. \\
& +\bar{D}^{* \alpha} \overleftrightarrow{\partial} \tau \\
\tau
\end{array}\right), \quad \begin{aligned}
& \mathcal{L}_{D_{(s)} \bar{D}_{(s)} J / \psi}= \\
& i g_{D_{(s)} D_{(s)} \psi} \psi \cdot \bar{D} \overleftrightarrow{\partial} D
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{L}_{\mathcal{P}^{*} \mathcal{P} * V}=\sqrt{2} \beta g_{V} \mathcal{P}_{b}^{*} \cdot \mathcal{P}_{a}^{* \dagger} v \cdot \mathbb{V}_{b a} \\
& -i 2 \sqrt{2} \lambda g_{V} \mathcal{P}_{b}^{* \mu} \mathcal{P}_{a}^{* \nu \dagger}\left(\partial_{\mu} \mathbb{V}_{\nu}-\partial_{\nu} \mathbb{V}_{\mu}\right)_{b a} \\
& -\sqrt{2} \beta g_{V} \widetilde{\mathcal{P}}_{a}^{* \dagger} \widetilde{\mathcal{P}}_{b}^{* v} \cdot \mathbb{V}_{a b} \\
& -i 2 \sqrt{2} \lambda g_{V} \widetilde{\mathcal{P}}_{a}^{* \mu \dagger} \widetilde{\mathcal{P}}_{b}^{* \nu}\left(\partial_{\mu} \mathbb{V}_{\nu}-\partial_{\nu} \mathbb{V}_{\mu}\right)_{a b} . \\
& \mathcal{L}_{\mathcal{P} \mathcal{P} \mathrm{V}}=-\sqrt{2} \beta g_{V} \mathcal{P}_{b} \mathcal{P}_{a}^{\dagger} v \cdot \mathbb{V}_{b a}+\sqrt{2} \beta g_{V} \widetilde{\mathcal{P}}_{a}^{\dagger} \widetilde{\mathcal{P}}_{b} v \cdot \mathbb{V}_{a b}, \\
& \mathcal{L}_{\mathcal{P}^{*} \mathcal{P} \mathbb{V}}=-2 \sqrt{2} \lambda g_{V} v^{\lambda} \varepsilon_{\lambda \mu \alpha \beta}\left(\mathcal{P}_{b} \mathcal{P}_{a}^{* \mu \dagger}+\mathcal{P}_{b}^{* \mu} \mathcal{P}_{a}^{\dagger}\right)\left(\partial^{\alpha} \mathbb{V}^{\beta}\right)_{b a} \\
& -2 \sqrt{2} \lambda g_{V} v^{\lambda} \varepsilon_{\lambda \mu \alpha \beta}\left(\widetilde{\mathcal{P}}_{a}^{* \mu \dagger} \widetilde{\mathcal{P}}_{b}+\widetilde{\mathcal{P}}_{a}^{\dagger} \widetilde{\mathcal{P}}_{b}^{* \mu}\right)\left(\partial^{\alpha} \mathbb{V}^{\beta}\right)_{a b}, \\
& \mathcal{L}_{\mathcal{P}^{*} \mathcal{P} * \mathrm{~V}}=\sqrt{2} \beta g_{V} \mathcal{P}_{b}^{*} \cdot \mathcal{P}_{a}^{* \dagger} v \cdot \mathbb{V}_{b a} \\
& -i 2 \sqrt{2} \lambda g_{V} \mathcal{P}_{b}^{* \mu} \mathcal{P}_{a}^{* \nu \psi^{*}}\left(\partial_{\mu} \mathbb{V}_{\nu}-\partial_{\nu} \mathbb{V}_{\mu}\right)_{b a} \\
& -\sqrt{2} \beta g_{V} \widetilde{\mathcal{P}}_{a}^{* \dagger} \widetilde{\mathcal{P}}_{b}^{*} v \cdot \mathbb{V}_{a b} \\
& -i 2 \sqrt{2} \lambda g_{V} \widetilde{\mathcal{P}}_{a}^{* \mu \dagger} \widetilde{\mathcal{P}}_{b}^{* \nu}\left(\partial_{\mu} \mathbb{V}_{\nu}-\partial_{\nu} \mathbb{V}_{\mu}\right)_{a b} . \\
& \mathcal{L}_{\mathcal{P} \mathcal{P} \sigma}=-2 g_{s} \mathcal{P}_{b} \mathcal{P}_{b}^{\dagger} \sigma-2 g_{s} \widetilde{\mathcal{P}}_{b} \widetilde{\mathcal{P}}_{b}^{\dagger} \sigma, \\
& \mathcal{L}_{\mathcal{P}^{*} \mathcal{P}^{*} \sigma}=2 g_{s} \mathcal{P}_{b}^{*} \cdot \mathcal{P}_{b}^{* \dagger} \sigma+2 g_{s} \widetilde{\mathcal{P}}_{b}^{*} \cdot \widetilde{\mathcal{P}}_{b}^{* \dagger} \sigma,
\end{aligned}
$$

$$
\frac{g_{D^{*} D^{*} \psi}}{m_{D^{*}}}=\frac{g_{D_{(s)} D_{(s)} \psi}}{m_{D}}=g_{(s)}^{*} D_{(s)} \psi=2 g_{2} \sqrt{m_{\psi}}
$$

Potential

Potential

$$
\mathcal{V}_{\mathbb{P}, \sigma}=I_{i}^{(d, c)} \Gamma_{1} \Gamma_{2} P_{\mathbb{P}, \sigma} f\left(q^{2}\right), \mathcal{V}_{\mathbb{V}}=I_{i}^{(d, c)} \Gamma_{1 \mu} \Gamma_{2 v} P_{\mathbb{V}}^{\mu \nu} f\left(q^{2}\right)
$$

Propagator

$$
P_{\mathbb{P}, \sigma}=\frac{i}{q^{2}-m_{\mathbb{P}, \sigma}^{2}}, \quad P_{\mathbb{V}}^{\mu \nu}=i \frac{-g^{\mu \nu}+q^{\mu} q^{\nu} / m_{\mathbb{V}}^{2}}{q^{2}-m_{\mathbb{V}}^{2}}
$$

Form factor

$$
f\left(q^{2}\right)=\frac{\Lambda_{e}^{2}}{q^{2}-\Lambda_{e}^{2}}
$$

Quasipotential Bethe-Salpeter Equation

$$
\mathcal{M}\left(k_{1}^{\prime} k_{2}^{\prime}, k_{1} k_{2} ; P\right)=\mathcal{V}\left(k_{1}^{\prime} k_{2}^{\prime}, k_{1} k_{2} ; P\right)+\int \frac{d^{4} k_{2}^{\prime \prime}}{(2 \pi)^{4}} \mathcal{V}\left(k_{1}^{\prime} k_{2}^{\prime}, k_{1}^{\prime \prime} k_{2}^{\prime \prime} ; P\right) G\left(k_{1}^{\prime \prime} k_{2}^{\prime \prime} ; P\right) \mathcal{M}\left(k_{1}^{\prime \prime} k_{2}^{\prime \prime}, k_{1} k_{2} ; P\right),
$$

$$
i \mathcal{M}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)=i \mathcal{V}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)+\int \frac{d \boldsymbol{k}^{\prime \prime}}{(2 \pi)^{3}} i \mathcal{V}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}^{\prime \prime}\right) G_{0}\left(\boldsymbol{k}^{\prime \prime}\right) i \mathcal{M}\left(\boldsymbol{k}^{\prime \prime}, \boldsymbol{k}\right)
$$

Partial wave decomposition

$$
i \mathcal{M}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)=i \mathcal{V}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}\right)+\int \frac{d \boldsymbol{k}^{\prime \prime}}{(2 \pi)^{3}} i \mathcal{V}\left(\boldsymbol{k}^{\prime}, \boldsymbol{k}^{\prime \prime}\right) G_{0}\left(\boldsymbol{k}^{\prime \prime}\right) i \mathcal{M}\left(\boldsymbol{k}^{\prime \prime}, \boldsymbol{k}\right)
$$

Transformation to matrix euqation

Transformed as a matrix equation by Gauss discretization

$$
i \mathcal{M}_{i k}=i \mathcal{V}_{i k}+\sum_{j=0}^{N} i \mathcal{V}_{i j} G_{j} i \mathcal{M}_{j k} \Rightarrow M=V+V G M
$$

$$
G_{j}=\left\{\begin{array}{cl}
-\frac{i \bar{q}}{32 \pi^{2} W}+\sum_{j}\left[\frac{w\left(q_{j}\right)}{(2 \pi)^{3}} \frac{\bar{q}^{2}}{2 W\left(q_{j}^{2}-\bar{q}^{2}\right)}\right] & \text { for } j=0, \text { if } \operatorname{Re}(W)>m_{1}+m_{2}, \\
\frac{w\left(q_{j}\right)}{(2 \pi)^{3}} \frac{q_{j}^{2}}{2 E\left(q_{j}\right)\left(\left(W-E\left(q_{j}\right)\right)^{2}-\omega^{2}\left(q_{j}\right)\right]} & \text { for } j \neq 0
\end{array}\right.
$$

$$
\text { with } \bar{q}=\frac{1}{2 W} \sqrt{\left[W^{2}-\left(m_{1}+m_{2}\right)^{2}\right]\left[W^{2}-\left(m_{1}-m_{2}\right)^{2}\right]} \text {. }
$$

Search for the pole

$$
M=(1-V G)^{-1} V \quad \Rightarrow \quad|1-V G|=0
$$

Results for observed states

	Full(V)		Full(B)								No $J / \psi(\Upsilon)$			$J / \psi(\Upsilon)$	
$\left[I^{G}\left(J^{P}\right)\right]$	Λ	W	Λ	W	Λ	W	Λ	W							
$D \bar{D}^{*}\left[0^{+}\left(1^{+}\right)\right]$	--	--	0.5	2.3	0.5	1.5	--	--							
$X(3872)$	--	--	0.7	13.4	0.7	7.8	--	--							
	0.2	2.6	0.8	23.3	0.8	15.3	--	--							
$D \bar{D}^{*}\left[1^{+}\left(1^{+}\right)\right]$	1.4	22.8	1.9	2.4	--	--	2.5	1.1							
$Z_{c}(3900)$	1.5	8.3	2.0	7.1	--	--	2.6	6.6							
	1.6	2.3	2.1	17.1	--	--	2.7	17.3							
$D^{*} \bar{D}^{*}\left[1^{+}\left(1^{+}\right)\right]$	1.4	23.4	2.3	2.8	--	--	3.6	1.7							
$Z_{c}(4020)$	1.6	5.3	2.6	10.2	--	--	3.8	6.8							
	1.8	0.5	2.8	20.0	--	--	4.0	18.4							
$B \bar{B}^{*}\left[0^{+}\left(1^{+}\right)\right]$	--	--	0.3	1.5	0.3	0.8	--	--							
	--	--	0.5	11.9	0.5	10.6	--	--							
$B \bar{B}^{*}\left[1^{+}\left(1^{+}\right)\right]$	0.1	4.4	0.6	21.4	1.5	20.2	--	--							
$Z_{b}(10610)$	0.9	19.5	1.6	2.4	2.2	0.8	3.6	1.2							
	1.0	4.4	1.9	10.9	2.6	8.4	3.9	9.8							
$B^{*} \bar{B}^{*}\left[1^{+}\left(1^{+}\right)\right]$	1.1	1.2	2.1	22.7	3.0	25.4	4.1	21.5							
$Z_{b}(10650)$	0.8	16.3	1.5	0.8	2.2	1.2	4.1	0.8							
	0.9	7.9	2.0	13.5	2.7	8.3	4.6	9.4							
	1.0	1.4	2.2	21.1	3.1	20.4	5.0	23.2							

Λ for $D \bar{D}^{*}$ and $D^{*} \bar{D}^{*}$ states with $1^{+}\left(1^{+}\right)$are about 2 GeV , larger than those to produce $0^{+}\left(1^{+}\right)$state.
\rightarrow The Z_{c} (3900) as a virtual state.
Guo, Hidalgo-Duque, Nieves,Valderrama, Phys.Rev.D 88 (2013) 054007
If we assume that the $Z_{c}(3900)$ and $Z_{c}(4020)$ are virtual states, the gap of the cutoff will reduce.

We consider the heavy meson exchange.
Without the J / ψ exchange, the two hidden-charm states with $1^{+}\left(1^{+}\right)$can not be produced while without the Υ exchange the two hidden-bottom states are still found with a little larger cutoff.

Only with the $J / \psi(Y)$ exchange, the bound state can be found in both cases while the hidden-bottom states requires larger cutoffs.

The J / ψ exchange in the charm sector is more important than the Υ exchange in the bottom sector.

Results for all channels

	$D \bar{D}(G=+)$		$D \bar{D}(G=-)$		DD	
$I\left(J^{P}\right)$	Λ	W	Λ	W	Λ	W
$0\left(0^{+}\right)$	0.6	2.1			--	--
	0.8	10.7			--	--
	0.9	18.0			--	--
$1\left(0^{+}\right)$			3.5	0.4	--	-
			3.9	11.0	--	--
			4.1	22.2	-	--
	$D \bar{D}$	= +)	$D \bar{D}^{*}$	= -)		
$0\left(1^{+}\right)$	0.5	2.3	0.6	1.5	0.8	1.2
	0.7	13.4	0.8	12.0	1.0	12.7
	0.8	23.3	0.9	22.7		27.9
$1\left(1^{+}\right)$	1.9	2.4	--	--	1.	--
	2.0	7.1	--	--	--	--
	2.1	17.1	--	--	--	--
	$D^{*} \bar{D}$	= +)	D^{*}	= -)		
$0\left(0^{+}\right)$	0.8	0.8			-	--
	1.4	14.0			--	--
	2.1	22.4			--	--
$0\left(1^{+}\right)$			0.6	1.0	0.9	1.0
			1.0	13.0	1.1	14.6
			1.2	23.5	1.2	33.7
$0\left(2^{+}\right)$	0.5	2.4			0.7	0.3
	0.7	14.0			1.0	15.2
	0.8	25.6			1.1	27.5
$1\left(0^{+}\right)$			1.8	1.9	--	--
			2.1	11.5	-	--
			2.3	23.1	--	--
$1\left(1^{+}\right)$	2.3	2.8			--	--
	2.6	10.2			--	--
	2.8	20.0			--	-
$1\left(2^{+}\right)$			4.5	1.6	1.75	1.0
			4.9	10.4	1.80	5.9
			5.0	18.2	1.90	41.4

	$B \bar{B}(G=+)$		$B \bar{B}(G=-)$		$\bar{B} \bar{B}$	
$I\left(J^{P}\right)$	Λ	W	Λ	W	Λ	W
$0\left(0^{+}\right)$	0.3	1.1			--	--
	0.5	9.2			--	--
	0.6	17.2			--	--
$1\left(0^{+}\right)$			3.5	1.7	-	--
			4.0	11.1	--	-
			4.3	22.9	-	--
		+)		= -)		
$0\left(1^{+}\right)$	0.3	1.5	1.2	2.2	0.4	1.0
	0.5	11.9	1.4	12.6	0.5	9.3
	0.6	21.4	1.5	22.0	0.7	18.2
$1\left(1^{+}\right)$	1.6	2.4	--	--	--	--
	1.9	10.9	--	--	--	--
	2.1	22.7	--	--	--	--
	$B^{*} \bar{B}^{*}$	= +)	$B^{*} \bar{B}$	$=-$)		
$0\left(0^{+}\right)$	0.4	1.3			--	--
	0.8	9.5			--	--
	1.2	20.9			-	--
$0\left(1^{+}\right)$			0.3	0.7	0.9	2.2
			0.6	10.3	1.1	11.6
			0.8	23.0	1.2	19.7
$0\left(2^{+}\right)$	0.3	1.7			0.4	1.5
	0.5	13.6			0.6	11.7
	0.6	25.4			0.7	22.1
$1\left(0^{+}\right)$			1.1	1.5	--	--
			1.5	12.3	--	-
			1.7	24.4	--	--
$1\left(1^{+}\right)$					--	--
	2.0	13.5			--	--
	2.2	21.1			--	-
$1\left(2^{+}\right)$			3.5	0.4	1.2	0.7
			4.4	13.8	1.4	5.5
			4.7	21.3	1.6	19.1

Hidden(doubly)-heavy tetraquark with strangeness from $\boldsymbol{D}_{(s)}^{(*)} \overline{\boldsymbol{D}}_{s}^{(*)} / \boldsymbol{B}_{(s)}^{(*)} \overline{\boldsymbol{B}}_{s}^{(*)}$ and $\boldsymbol{D}_{(s)}^{(*)} \boldsymbol{D}_{s}^{(*)} / \boldsymbol{B}_{(s)}^{(*)} \boldsymbol{B}_{s}^{(*)}$ interactions

Wave function

$$
\begin{aligned}
& \left|X_{D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{* 0} D_{s}^{-}\right\rangle+\eta\left|D^{0} D_{s}^{*-}\right\rangle\right), \\
& \left|X_{D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{*+} D_{s}^{-}\right\rangle+\eta\left|D^{+} D_{s}^{*-}\right\rangle\right) .
\end{aligned}
$$

where $\eta= \pm$ corresponds to the $Z_{c s}$ state with $G_{U / V}= \pm$ Meng, Wang, Zhu, Phys. Rev. D 102 (2020) 111502

$$
\begin{aligned}
& \left|X_{D^{*} \bar{D}_{s}^{*}}^{-}\right\rangle=\left|D^{* 0} D_{s}^{*-}\right\rangle, \quad\left|X_{D_{s} \bar{D}_{s}}^{0}\right\rangle=\left|D_{s}^{-} D_{s}^{+}\right\rangle, \\
& \left|X_{D^{*} \bar{D}_{s}^{*}}^{0}\right\rangle=\left|D^{*+} D_{s}^{*-}\right\rangle . \\
& \left|X_{D_{s} \bar{D}_{s}^{*}}^{0}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D_{s}^{-} D_{s}^{*+}\right\rangle-C\left|D_{s}^{*-} D_{s}^{+}\right\rangle\right) .
\end{aligned}
$$

$$
\begin{aligned}
& \left|X_{D^{*} D_{s}+D D_{s}^{*}}^{+}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{* 0} D_{s}^{+}\right\rangle+\eta\left|D^{0} D_{s}^{*+}\right\rangle\right), \\
& \left|X_{D^{*} D_{s}+D D_{s}^{*}}^{++}\right\rangle=\frac{1}{\sqrt{2}}\left(\left|D^{*+} D_{s}^{+}\right\rangle+\eta\left|D^{+} D_{s}^{*+}\right\rangle\right) . \\
& \left|X_{D^{*} D_{s}^{*}}^{+}\right\rangle=\left|D^{* 0} D_{s}^{*+}\right\rangle, \quad\left|X_{D D_{s}}^{+}\right\rangle=\left|D^{0} D_{s}^{+}\right\rangle, \\
& \left|X_{D^{*} D_{s}^{*}}^{++}\right\rangle=\left|D^{*+} D_{s}^{*+}\right\rangle, \quad\left|X_{D D_{s}}^{++}\right\rangle=\left|D^{+} D_{s}^{+}\right\rangle . \\
& \left|X_{D_{s}^{*}+D_{s}^{(*)}}^{++}\right\rangle=\left|D_{s}^{(*)+} D_{s}^{(*)+}\right\rangle .
\end{aligned}
$$

Single channel results

$$
Z_{c s}(3895)
$$

The calculation supports the existence of a state with $G_{U / V}=+$ at a cutoff of about 3 GeV , which is relevant to the

	$D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}$				$D^{*} D_{s}+D D_{s}^{*}$			
\triangle	G_{U}	$=+$	$G_{U /}$	$=-$	$G_{U /}$	$=+$		$=-$
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
1^{+}	3.1	1.4	\ldots		...	\ldots	2.0	0.4
	3.3	10.8	\ldots	\ldots	\cdots	\ldots	2.3	10.6
	3.4	19.1	\ldots	\ldots	\ldots	\ldots	2.4	17.7
	$D_{s} \bar{D}_{s}^{*}$				$D_{s} D_{s}^{*}$			
	$C=+$		$C=-$		$C=-$			
J^{P}	Λ	W	Λ	W	Λ	W		
1^{+}	1.4	0.8	1.8	1.0	3.40	0.1		
	1.7	9.7	2.3	7.8	3.42	10.5		
	1.8	15.8	2.6	16.8	3.43	18.1		
$B^{*} \bar{B}_{s}+B \bar{B}_{s}^{*}$					$B^{*} B_{s}+B B_{s}^{*}$			

J^{P}	$D^{*} \bar{D}_{s}^{*}$		$D_{s}^{*} \bar{D}_{s}^{*}$		$D^{*} D_{s}^{*}$		$D_{s}^{*} D_{s}^{*}$	
	Λ	W	Λ	W	Λ	W	Λ	W
0^{+}	4.2	1.3	1.3	0.9	\ldots
	4.5	7.8	1.6	7.8	\ldots	\ldots	\ldots	\ldots
	4.7	15.4	1.8	16.6	\cdots	\cdots	\ldots	\cdots
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
1^{+}	4.2	1.7	1.4	0.6	2.95	0.5	3.00	0.4
	4.5	8.4	1.8	7.7	3.03	8.2	3.20	11.0
	4.8	22.6	2.1	18.5	3.07	23.2	3.25	18.8
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
2^{+}	4.1	0.8	2.0	1.1	3.21	0.4	3.00	0.9
	4.5	9.2	2.8	8.4	3.23	10.2	3.10	11.2
	4.7	18.1	3.2	16.1	3.24	25.7	3.15	21.6
	$B^{*} \bar{B}_{s}^{*}$		$B_{s}^{*} \bar{B}_{s}^{*}$		$B^{*} B_{s}^{*}$		$B_{s}^{*} B_{s}^{*}$	
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
0^{+}	\ldots	...	0.8	0.7	3.9	1.4	\ldots	\ldots
	\ldots	\ldots	1.2	8.2	4.2	8.7	...	\ldots
			1.5	20.5	4.4	20.3	\ldots	
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
1^{+}	0.8	0.4	1.2	0.7	1.8	0.7
	\ldots	\ldots	1.2	5.7	1.7	8.8	2.3	6.8
	...	\ldots	1.6	18.3	2.0	19.8	2.6	14.3
J^{P}	Λ	W	Λ	W	Λ	W	Λ	W
2^{+}	\ldots	...	1.0	0.7	2.0	0.6	2.1	0.2
	\ldots	\ldots	1.8	8.1	2.7	8.7	2.5	11.5
	\cdots	\ldots	2.2	13.8	2.9	15.3	2.6	19.2

- $D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}$ bound state with $G_{U / V}=+$ can be related to the $Z_{c s}$ (3895) state observed at BESIII.
- it is suggested as the U / V-spin partner of the $Z_{c}(3900)$

Meng, Wang, Zhu, Phys. Rev. D 102 (2020) 111502

- The J / ψ exchange is important to reproduce the $Z_{c}(3900)$.
- Only J / ψ exchange involves in $Z_{c s}$ state.
- Hence, the J / ψ exchange is essential to reproduce both $Z_{c s}(3895)$ and $Z_{c}(3900)$.

Table 4 The binding energies of some bound states with selected value of cutoff Λ. The result for the $D^{(*)} \bar{D}_{s}^{(*)}$ systems are listed in the $2-4^{\text {th }}$ columns. The results for the $D^{(*)} \bar{D}^{(*)}$ only with J / ψ exchange are listed in $5-7^{\text {th }}$ columns. The cutoff Λ and binding energy E_{B} are in the units of GeV and MeV .

$J^{P G}$	$Z_{c s}$			Z_{c} only with J / ψ		
	system	Λ	E_{B}	system	Λ	E_{B}
0^{+}	$D \bar{D}_{s}$	4.6	5.4	$D \bar{D}$	4.6	0.3
1^{++}	$D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}$	3.2	5.0	$D \bar{D}^{*}$	3.2	0.8
0^{+}	$D^{*} \bar{D}_{s}^{*}$	4.4	4.8	$D^{*} \bar{D}^{*}$	4.4	0.6
1^{+}	$D^{*} \bar{D}_{s}^{*}$	4.4	5.5	$D^{*} \bar{D}^{*}$	4.4	0.9
2^{+}	$D^{*} \bar{D}_{s}^{*}$	4.4	6.1	$D^{*} \bar{D}^{*}$	4.4	1.1

Generally speaking, there is no significant difference between two cases as expected, which means it is reasonable to consider $Z_{c s}$ state as strange partner of Z_{c} state in the $S U(3)_{F}$ symmetry.

Moreover, we can expect that the binding of the hidden charmed strange system $Z_{c s}$ is loosely than the hidden charmed system Z_{c} because more light exchanges are allowed for the latter state.

The role played by the σ exhange

Table 6 The binding energies of some bound states with some selected values of cutoff Λ. The results with σ exchange are listed $3-4^{r d}$ columns. The result without σ exchange are listed $5-6^{\text {th }}$ columns. The cutoff Λ and binding energy E_{B} are in the units of GeV and MeV .

system	$J^{P C / G}$	with σ		without σ	
		Λ	E_{B}	Λ	E_{B}
$D \bar{D}_{s}$	0^{+}	4.4	6.7	4.4	1.1
$D^{*} \bar{D}_{s}+D \bar{D}_{s}^{*}$	1^{++}	3.1	5.9	3.1	1.4
$D^{*} \bar{D}_{s}^{*}$	0^{+}	4.2	6.1	4.2	1.3
$D^{*} \bar{D}_{s}^{*}$	1^{+}	4.2	6.8	4.2	1.7
$D^{*} \bar{D}_{s}^{*}$	2^{+}	4.1	5.1	4.1	0.8
$D D_{s}$	0^{+}	\ldots	\ldots	\ldots	\ldots
$D^{*} D_{s}+D D_{s}^{*}$	1^{++}	\ldots	\ldots	\ldots	\ldots
$D^{*} D_{s}^{*}$	0^{+}	\ldots	\ldots	\ldots	\ldots
$D^{*} D_{s}^{*}$	1^{+}	2.95	1.2	2.95	0.5
$D^{*} D_{s}^{*}$	2^{+}	3.21	1.5	3.21	0.4
$D_{s} \bar{D}_{s}$	0^{+}	1.6	1.1	1.6	0.3
$D_{s} \bar{D}_{s}^{*}$	1^{++}	1.4	1.9	1.4	0.8
$D_{s}^{*} \bar{D}_{s}^{*}$	0^{+}	1.3	1.9	1.3	0.9
$D_{s}^{*} \bar{D}_{s}^{*}$	1^{+}	1.4	1.6	1.4	0.6
$D_{s}^{*} \bar{D}_{s}^{*}$	2^{+}	2.0	2.6	2.0	1.1
$D_{s} D_{s}$	0^{+}	\ldots	\ldots	\ldots	\cdots
$D_{s} D_{s}^{*}$	1^{+}	3.41	6.1	3.41	1.2
$D_{s}^{*} D_{s}^{*}$	0^{+}	...	\ldots	...	\ldots
$D_{s}^{*} D_{s}^{*}$	1^{+}	3.0	0.4	3.0	0.4
$D_{s}^{*} D_{s}^{*}$	2^{+}	3.0	1.3	3.0	0.9

In our calculation we adopt the widely used assumption that no $s \bar{s}$ component in σ meson.

It can not be exchanged between the mesons considered in the current work.

In Ref [arXiv: 2102.13058] where the J / ψ exchange was not included, the σ exchange is proposed to play the most important factor to form a molecular state to interpret the $Z_{c s}$ (3895).

Here, the Lagrangians for the vertices $P P \sigma$ and $P^{*} P^{*} \sigma$ are also applied to the heavy-strange meson.

One can find that there is no significant difference between cases with and without σ exchange.

It suggests that if we include the J / ψ exchange, the contribution from the σ exchange may be smeared in our theoretical frame.

Coupled-channel results

0^{+}			1^{+}				0^{+}			1^{+}			
Λ		$M_{t h}-z$	Λ	$M_{t h}-z$			Λ	$M_{\text {th }}-z$		Λ	$M_{t h}-z$		
	$\bar{D} \bar{D}_{s}$	$D^{*} \bar{D}_{s}^{*}$		$D^{*} \bar{D}_{s}$	$D \bar{D}_{\text {* }}^{*}$	$D^{*} \bar{D}_{s}^{*}$		$D D_{s}$	$D^{*} D_{s}^{*}$		$D^{*} D_{s}$	$D D_{s}^{*}$	$D^{*} D_{s}^{*}$
4.2	1.9	$1.7+4.2 i$	3.7	0.9	\ldots	2.20	1.6	. ${ }^{*}$...
4.3	6.0	$3.8+7.0 i$	3.9	10.0	$1.0+0.87 i$	\ldots	\ldots	\cdots	\ldots	2.33	16.7	$0.6+1.7 i$. \cdot
4.4	13.4	$5.8+11.1 i$	4.0	19.2	$2.8+0.00 i$	$0.2+0.04 i$	\ldots	\ldots	\ldots	2.40	32.5	$5.2+0.0 i$	$1.5+3.9 i$
			4.1	35.3	$4.1+0.00 i$	$0.7+0.13 i$	\cdots		\cdots	2.50	1^{+}	20.4+0.0i	$4.4+5.4 i$
0^{+}			${ }^{+}$				0^{+}			1^{+}			
Λ	$M_{t h}-z$		Λ	$M_{t h}-z$		$Z_{c s}(3895)$	Λ	$M_{\text {th }}-z$		Λ	$M_{t h}-z$		
	$D_{s} \bar{D}_{s}$	${ }^{D_{s}^{*} \bar{D}_{s}^{*}}$		$D_{s}^{*} \bar{D}_{s}$	$D_{s}^{*} \bar{D}_{s}^{*}$		\ldots		$D_{s}^{*} D_{s}^{*}$	2.30	D ${ }_{\text {d }}^{*} D_{s}$ \cdots	$\begin{gathered} D_{s}^{*} D_{s}^{*} \\ 0.2+1.8 i \end{gathered}$	
1.6	0.3	$7.8+0.11 i$	1.4	0.8	$0.6+0.00 i$		2.70	\ldots	$35.0+6.9 i$	
1.7	1.0	$11.7+0.21 i$	1.5	2.5	$1.7+0.01 i$		\ldots	\ldots	...	3.31	0.1	35.0. ${ }^{\text {. }}$	
1.8	2.2	$16.6+0.37 i$	1.6	5.4	$3.2+0.01 i$		\ldots	.	\ldots	3.40	21.9	\ldots	
	0^{+}		1^{+}				0^{+}			11^{+}			
Λ	$M_{\text {th }}-z$		Λ	$M_{\text {th }}-z$			Λ	$M_{\text {th }}-z$		Λ	$M_{t h}-z$		
	$B \bar{B}_{s}$	$B^{*} \bar{B}_{s}^{*}$		$B^{*} \bar{B}_{s}$	$B \bar{B}_{s}^{*}$	$B^{*} \bar{B}_{s}^{*}$		$B B_{s}$	$B^{*} B_{s}^{*}$		$B^{*} B_{s}$	$B B_{s}^{*}$	$B^{*} B_{s}^{*}$
\ldots	...		\ldots		...		\ldots	\ldots	...	1.2	...	$4.9+0.0 i$	$1.7+2.2 i$
\ldots	\ldots	\ldots	\cdots	\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	1.3	\ldots	$7.7+0.0 i$	$4.3+3.0 i$
	\ldots		\cdots	\cdots		\cdots	\ldots	\cdots	\ldots	1.4	0.1	$11.7+0.0 i$	$5.2+4.2 i$
	0^{+}		1^{+}				0^{+}			1^{+}			
Λ	$M_{t h}-z$		Λ	$M_{t h}-z$			Λ	$M_{t h}-z$		Λ	$M_{t h}-z$		
	$B_{s} \bar{B}_{s}$	$B_{s}^{*} \bar{B}_{s}^{*}$		$B_{s}^{*} \bar{B}_{s}$	$B_{s}^{*} \bar{B}_{s}^{*}$			$B_{s} B_{s}$	$B_{s}^{*} B_{s}^{*}$		$B_{s}^{*} B_{s}$	$B_{s}^{*} B_{s}^{*}$	
1.0	0.5	$3.4+0.00 i$	1.0	1.8	$2.2+0.01 i$		\ldots			1.2		$0.2+0.66 i$	
1.1	2.5	$5.4+0.00 i$	1.1	3.3	$3.7+0.02 i$			\ldots	\ldots	2.1	4.8		
1.2	3.8	$8.2+0.00 i$	1.2	5.3	$5.7+0.02 i$		\ldots	\ldots	\ldots	2.8	21.0	...	

Here we consider the $D^{*} \bar{D}_{s}$ and $D \bar{D}_{s}^{*}$ as sperated channel and coupled each other to discuss the effect of violation of symmetry. Generally speaking, the results with such treatment are consistent with single-channel calculation with $G_{U / V}$ parity.

Summary

The Hidden(doubly)-heavy molecular state from $D_{(s)}^{(*)} \bar{D}_{(s)}^{(*)} / B_{(s)}^{(*)} \bar{B}_{(s)}^{(*)}$ and $D_{(s)}^{(*)} D_{(s)}^{(*)} /$ $B_{(s)}^{(*)} B_{(s)}^{(*)}$ interactions are studied systematically.

- $X(3872), Z_{c}(3900)$ and $Z_{c}(4020)$ can be well reproduced as hidden-charm molecular states. The latter two may be virtual states.
- The $T_{c c}(3875)$ can be interpretated as a doubly-charm $D D^{*}$ state.
- The $Z_{c s}(3895)$ can be interpretated as a $D^{*} \bar{D}_{s}+D \bar{D}_{S}^{*}$ state with $G_{U / V}=+$ as strange partner of $Z_{c}(3900)$ state in the $S U(3)_{F}$ symmetry
- Other molecular states are predicted

THANK YOU!

