Production of Tcc

Qin Qin (秦溱)

- **Huazhong University of Science and Technology**
 - 华中科技大学
 - 2008.08026; 2019.05678 In collaboration with Yin-Fa Shen, Fu-Sheng Yu & Yi Jin, Shi-Yuan Li, Yan-Rui Liu, Zong-Guo Si
- Workshop on Hadron Structure at High-Energy, High-Luminosity Facilities
 - 25-27 October 2021, Institute for Nonperturbative Physics, Nanjing

• It is important to study the double-charm tetraquark T_{cc}

of T_{cc} at LHCb

• Further study of T_{cc} production properties can help probe its nature

Contents

• We predicted the correct discovery channel and the correct signal yield

The quark model

- Old myth
- New life

Murry Gell-Mann 1969 Nobel Prize for physics

George Zweig

Three new milestones

Observation of tetraquarks \bullet

[BESIII, *Phys.Rev.Lett.* 110 (2013) 252001]

Observation of pentaguarks \bullet

[LHCb, *Phys.Rev.Lett.* 115 (2015) 072001]

Observation of a double-charm baryon Ξ_{cc}^{++} lacksquare[LHCb, *Phys.Rev.Lett.* 119 (2017) 112001]

The *Physics* 2013 "Highlights of the Year" (rank 1st)

The *Physics World* 2015 "top-10 breakthroughs"

国家科技部"2017年度中国科学十大进展"

"Periodic table of the hadrons"

1 Hydrogen 1.008		Periodic Table of the Elements													2 Helium 4.003		
3 Lithium 6.941	4 Beryllium 9.012											5 B Boron 10.811	6 C Carbon 12.011	7 N Nitrogen 14.007	8 0 Oxygen 15.999	9 F Fluorine 18.998	10 Ne Neon 20.180
11 Na Sodium 22.990	12 Magnesium 24.305											13 Aluminum 26.982	14 Silicon 28.086	15 Phosphorus 30.974	16 S Sulfur 32.066	17 Cl Chlorine 35.453	18 Argon 39.948
19 K Potassium 39.098	20 Ca Calcium 40.078	21 Sc Scandium 44.956	22 Titanium 47.867	23 V Vanadium 50.942	24 Cr Chromium 51.996	25 Manganese 54.938	26 Fe Iron 55.845	27 Cobalt 58.933	28 Nickel 58.693	29 Cu Copper 63.546	30 Zn Zinc 65.38	31 Gallium 69.723	32 Gee Germanium 72.631	33 Ass Arsenic 74.922	34 Selenium 78.972	35 Br Bromine 79.904	36 Kr Krypton 84.798
37 Rb Rubidium 85.468	38 Sr Strontium 87.62	39 Y Yttrium 88.906	40 Zr Zirconium 91.224	41 Nb Niobium 92.906	42 Molybdenum 95.95	43 TC Technetium 98.907	44 Ru Ruthenium 101.07	45 Rhodium 102.906	46 Pd Palladium 106.42	47 Ag Silver 107.868	48 Cd Cadmium 112.411	49 In Indium 114.818	50 Sn Tin 118.711	51 Sb Antimony 121.760	52 Tellurium 127.6	53 Iodine 126.904	54 Xe Xenon 131.294
55 CS Cesium 132.905	56 Barium 137.328	57-71	72 Hafnium 178.49	73 Ta Tantalum 180.948	74 W Tungsten 183.84	75 Ree Rhenium 186.207	76 Os 0smium 190.23	77 Iridium 192.217	78 Pt Platinum 195.085	79 Au Gold 196.967	80 Hg Mercury 200.592	81 Tl Thallium 204.383	82 Pb Lead 207.2	83 Bi Bismuth 208.980	84 PO Polonium [208.982]	85 At Astatine 209.987	86 Rn Radon 222.018
87 Francium 223.020	88 Ra Radium 226.025	89-103	104 Rf Rutherfordium [261]	105 Db Dubnium [262]	106 Sg Seaborgium [266]	107 Bh Bohrium [264]	108 HS Hassium [269]	109 Meitnerium [268]	110 Ds Darmstadtium [269]	111 Rg Roentgenium [272]	112 Copernicium [277]	113 Nh Nihonium unknown	114 Fl Flerovium [289]	115 Mc Moscovium unknown	116 LV Livermorium [298]	117 TS Tennessine unknown	118 Oganesson unknown
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 Lanthanum 138.905 Lanthanum 140.116 Praseodymium 140.4242 Promethium 144.242 150.36 63 64 65 66 67 68 69 70 71											.U etium 1.967						
89 90 91 92 Actinium Thorium Protactinium 92 227.028 Thorium 231.036 Uranium						J J Mum Magenti and Anticipants and Anticip				OF Dornium L.080	teinium 254]	101 Mend 7.095	102 Not 58.1	103 Delium 9.101	encium [62]		
	Alkaline Metal Alkaline Metal Metal Semimetal Nonmetal Halogen Gas Lanthanide Actinide																

$\pi, K,$	D	В	η_c	B _c	η_b				
p, n, 	Λ_c	Λ_b				Ecc	Ξ_{bc}	Ξ_{bb}	
	X(2900)		Z_c			T _{cc}	T_{bc}	T_{bb}	×
			(P_c)						

 Z_c, P_c : a new period

 Ξ_{cc} , X(6900): a new main group

Beyond stamp collecting

hadrons

also electroweak dynamics

e.g., doubly heavy baryons have a unique structure, resembling a 'double star' with a 'planet' attached

analogous to a heavy meson, but also different: bosonic, sizable heavy element

e.g., the doubly heavy tetraquarks help us probe the nature of exotic hadronic states, cusps or true resonances

• Because of color confinement, properties of quarks are studied via

New types of hadrons provide new visual angles into QCD and

Who is to be shot next?

 Ξ_{bc} : [**QQ**,Shi,Wang,Yang,Yu,Zhu,2108.06716]

Two targets in the talk @Nankai, 2nd May 2021.

 T_{cc} : [**QQ**,Shen,Yu,2008.08026] (this talk)

"Discovery potential of double-charm tetraquarks"

Three months later $- T_{cc}$ discovery was reported by LHCb on 28 July 2021.

Discovery of T_{cc}

[**QQ**,Shen,Yu,2008.08026]

Discovery potentials of double-charm tetraquarks

We find that their production cross sections at the LHCb with $\sqrt{s} = 13$ TeV reach $\mathcal{O}(10^4)$ pb, which indicate that the LHCb has collected $\mathcal{O}(10^8)$ such particles. Through the decay channels of $T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+K^-\pi^+$ or $D^0D^+\gamma$ (if stable) or $T^{\{cc\}}_{[\bar{u}\bar{d}]} \to D^+K^-\pi^+$ D^0D^{*+} (if unstable), it is highly hopeful that they get discovered at the LHCb in the near future. We also discuss the productions and decays of the double-charm tetraquarks at future Tera-Z factories.

branching fractions of $T_{[\bar{u}\bar{d}]}^{\{cc\}}$ decays is the same as the observed Ξ_{cc}^{++} . Comparing with the production rates between double-charm tetraquarks and baryons, and considering around 2×10^3 events of Ξ_{cc}^{++} with the current LHCb data, the signal yields of $T_{[\bar{u}\bar{d}]}^{\{cc\}}$ would be $\mathcal{O}(10^2)$ at LHCb, and will reach $\mathcal{O}(10^3)$ at LHCb Run III. Thus it is hopefully expected that the double-charm tetraquark will be observed in the near future. Although the production rates are smaller at the future Z factories, it is also expected to be observed at the Tera-Z factories due to the smaller backgrounds.

Correct discovery channel

Correct signal yield

 $N_{\rm c} = 117 \pm 16$

[LHCb,2109.01038;2109.01056]

@ European Physical Society Conference on high energy physics 2021

Discovery potential Production Detection

[QQ,Shen,Yu,2008.08026]

Production Mechanism

It was propose for double-bottom hadron production

1. Two produced heavy quarks stay close enough to form a heavy diquark

- Assuming T_{cc} a real tetraquark, the same mechanism applies
- <u>Stay close enough?</u> One parameter —

[Ali, Parkhomenko, QQ, Wang, 1805.02535; Ali, QQ, Wang, 1806.09288]

2. The heavy diquark further fragments into doubly heavy hadrons

 $\Delta M \equiv M_{cc} - 2m_c \le (2.0^{+0.5}_{-0.4}) \text{ GeV}$

Determined by matching the B_c production rate to $bb\bar{c}c$

Production of double-charm hadrons

With partonic simulation by MadGraph & Pythia, we obtain

• The cross section for all double-charm hadrons

 $\sigma(pp \to H_{cc} + X) = (310^{+170}_{-70})$ nb;

- For double-charm <u>baryons</u>, e.g. $\sigma(\Xi_{cc}^{++}) = (103^{+56}_{-22}) \text{ nb}$
- For double-charm tetraquarks, e.g.

$$\sigma(T_{cc}^+) = (24_{-7}^{+14}) \text{ nb}$$

The cuts are $4 < p_T < 15$ GeV, $2 < \eta < 4.5$ @ 13 TeV LHCb

Comparison with theory

vs 62 nb (NRQCD)

[Chang,Qiao,Wang,Wu,0601032]

Comparison with experiment

vs [30, 130] nb (LHCb with theory inputs)

 $\sigma(\Xi_{cc}^{++}) \times \mathcal{B}(\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+)$ $= (2.22 \pm 0.27 \pm 0.29) \times 10^{-4}$ $\sigma(\Lambda_c^+)$

[LHCb, 1910.11316]

Propose the golden channel $T_{cc}^+ \rightarrow D^0 D^{*+} \rightarrow D^0 D^0 \pi^+$

- Big branching ratio
- Big detection efficiency (all charged particles)

Compared with
$$\Xi_{cc}^{++} \to \Lambda_c^+ K^- \pi^+ \pi^+$$

Production
$$\sigma(\Xi_{cc}^{++}) = (103^{+56}_{-22}) \text{ nb}$$
$$\sigma(T_{cc}^{+}) = (24^{+14}_{-7}) \text{ nb}$$

Decay
$$Br(\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi^+) Br(\Lambda_c^+ \rightarrow pR)$$

 10% 6%
 $Br(T_{cc} \rightarrow D^0 D^{*+}) Br(D^{*+} \rightarrow D^0 \pi^+)$
 $1/2$ 2/3

Detection of T_{cc}

$$f_{T_{cc}}/f_{\Xi_{cc}} \sim 1/4$$

$$Br(T_{cc})/Br(\Xi_{cc}^{++}) \sim 1/4$$
1500 events of $\Xi_{cc}^{++} \rightarrow \Lambda_c^+ K^- \pi^+ \pi$

$$T_{cc}^+: N_s \sim 100$$

[**QQ**,Shen,Yu, 2008.08026]

[LHCb,2109.01038;2109.01056]

Further production properties

— — To probe the nature of T_{cc}

[Jin,Li,Liu,QQ,Si,Yu,2019.05678]

Observables of T_{cc} **to probe its nature**

Molecule? Tetraquark?

•

Mass, spin, parity, ...

<u>Tetraquark</u>

 $M = (3.87 \pm 0.09) \text{ GeV}$ [Wang, Yan, 1710.02810]

- Dynamical quantities
 - 1. Decay rates
- 2. Production observables
 - Cross section
 - Kinematic spectrum
 - Production ratio
 - • • •

Static quantities [Dong,Guo,Zou,2108.02673, see also Prof. He's talk]

Cross section

(Input
$$\Psi(0) = 0.14 \text{ GeV}^{3/2}$$
)

[Li,Sun,Liu,Zhu,1211.5007]

Kinematic spectrum

 p_{T} distribution

 $z \equiv p_{+}^{hadron} / p_{+}^{cluster}$ distribution

Similarity between Ξ_{cc} and $T_{cc}!$

Production ratio

If experiments find an isospin triplet T'_{cc} , e.g. $T^{\{cc\}}_{[\bar{u}\bar{u}]}$, compare their production cross sections.

Summary

- 2021 at the LHCb

• An observable
$$\frac{\sigma(pp \rightarrow T_{cc}X) *}{\sigma(pp \rightarrow X(3872)X)^*}$$

• We studied the discovery potential of T_{cc}^+ in 2020, suggesting the golden channel $T_{cc}^+ \rightarrow D^0 D^{*+} \rightarrow D^0 D^0 \pi^+$, which has just been confirmed by the discovery in

Considering the production and detection, we predicted the <u>correct signal yield</u>

 $N_{\rm c} \sim 100 \text{ vs } N_{\rm c} = 117 \pm 16$

• We further propose to probe the nature of T_{cc}^+ by its production properties, including the production (1) cross section, (2) kinematic spectrum and (3) production rate

* $B(T_{cc} \rightarrow D^0 D^0 \pi^+)$ * $B(X(3872) \rightarrow D^0 \overline{D}^0 \pi^0)$ to be studied

Thank you!