

Recent progress on light pseudoscalar and axial vector meson spectra

Qiang Zhao Institute of High Energy Physics, CAS zhaoq@ihep.ac.cn

Workshop on Hadron Structure at High-Energy, High-Luminosity Facilities Oct. 25-27, 2021, Nanjing

Outline

- **1.** The long-standing $\eta(1405)/\eta(1475)$ puzzle and pseudoscalar glueball search
- **2.** The presence of the "triangle singularity"
- **3.** Reconsile the the dynamical model calculations with LQCD simulations
- 4. Further evidences for the TS mechanism
- **5.** Brief summary

1. The $\eta(1405)/\eta(1475)$ puzzle and the pseudoscalar glueball search

Hadrons beyond the conventional QM and...

Exotics of Type-I:

J^{PC} are not allowed by Q Q configurations, e.g. 0⁻⁻,1⁻⁺ ...

Direct observation

Exotics of Type-II: J^{PC} are the same as Q Q configurations

- Outnumbering of conventional QM states?
- Peculiar properties?

"Exotics" of Type-III:

Leading kinematic singularity can cause measurable effects, e.g. the triangle singularity.

- What's the impact?
- How to distinguish a genuine state from kinematic effects?

Exotics of Type II: The abundance of 0⁻⁺ (I=0) states implies an exotic candidate

The arising of the E-1 puzzle:

E meson was first observed in 1965 in $p \ p \rightarrow$ (K K π) $\pi^+\pi^-$. Observation of $\iota(1440)$ at Mark II (left, 1980) and Crystal Ball (right, 1982)

Fig. 69. Observation of the $\eta(1440)$ by Mark II and Crystal Ball. (a) Mark II, radiative photon detection required, (b) Mark II, photon detection not required. The events in the shaded region have $m_{K\bar{K}} < 1.05 \text{ GeV}$ ("delta cut"). (c) Crystal Ball, events in the shaded region have $m_{K\bar{K}} < 1.125 \text{ GeV}$.

Confirmation of η**(1440)** at Mark III in 1987

Distorted lineshape?

• Regge trajectory for the η/η' mass spectrum

J.S. Yu, Z.F. Sun, X. Liu, and Q. Z., PRD83, 114007 (2011)

The abundance of 0⁻⁺ (I=0) states implies a glueball candidate?

Positive:

- Flux tube model favors M_G ≅ 1.4 GeV [1]
- A dynamical model based on U_A(1) anomaly gives a similar mass [2].
 Caveat:
- LQCD favors M_G ≈ 2.4 − 2.6 GeV [3,4,5]

What can we learn from modern high-precision data? E.g. BESIII, Belle, LHCb...

How to understand the HUGE difference between the dynamical calculations and LQCD results?

[1] Faddeev, Niemi, and Wiedner, PRD70, 114033 (2004)

- [2] H. Y. Cheng, H. n. Li, and K. F. Liu, Phys. Rev. D 79, 014024 (2009)
- [3] Morningstar and Peardon, PRD60, 034509 (1999); Y. Chen et al., PRD73, 014516(2006)
- [4] Richards, Irving, Gregory, and McNeile (UKQCD), PRD82, 034501 (2010)
- [5] W. Sun et al. [CLQCD], arXiv:1702.08174[hep-lat]

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

WEIGHTED AVERAGE 1408.8±1.8 (Error scaled by 2.1)

						χ^2	η (1405) DECAY MODES				
			ABLIKIM ABLIKIM ABLIKIM ABLIKIM AMSLER AMSLER AMSLER BOLTON FUKUI AUGUSTIN AUGUSTIN ANDO NICHITIU ADAMS CICALO BERTIN BERTIN BAI RATH	12E 12E 11J 04B 04B 00A 97B 95F 92B 91C 92B 91C 01B 99 97 95 90C 89	BES3 BES3 CBAR CBAR MPS GAM4 CBAR MRK3 SPEC DM2 SPEC OBLX B852 OBLX OBLX OBLX OBLX OBLX MRK3 MPS	χ 0.0 0.3 6.4 3.4 0.6 6.4 0.0 2.2 27.1 3.2 5.0 2.6 0.6 0.1 12.9 0.6 0.7	Γ ₁ Γ ₂ Γ ₃ Γ ₄ Γ ₅ Γ ₆ Γ ₇ Γ ₈ Γ ₉ Γ ₁₀		WODES Fraction (Γ_i/Γ) seen seen seen seen seen seen seen see		
			("	Confidence	Level <	72.1 0.0001)	1	$_{1}$ K ⁺ (892)K	seen		
1360	1380 1400	1420	1440	1460							

 η (1405) mass (MeV)

(1405)

 $I^{G}(J^{PC}) = 0^{+}(0^{-+})$

η(1405) MASS

VALUE (MeV)

DOCUMENT ID

1408.8\pm2.0 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

P.A. Zyla et al. (ParticleData Group),Prog. Theor. Exp. Phys.2020, 083C01 (2020)

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016) and 2017 update

$$I^{G}(J^{PC}) = 0^{+}(0^{-+})$$

P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020)

Only a single state is observed in the J/ ψ and ψ' decays at BESIII

PDG 20)16	$J/\psi, \psi'$	q
$J/\psi(1S)$	$I^{G}(J^{PC}) = 0^{-}(1^{-})$	c	_η(),
$ \begin{array}{ccc} {\sf \Gamma}_{151} & \gamma \eta (\\ {\sf \Gamma}_{152} & \gamma \eta (\\ {\sf \Gamma}_{153} & \gamma \eta (\\ {\sf \Gamma}_{154} & \gamma \eta (\end{array} \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{ccccc} \pm 0.6 &) \times 10^{-3} & \text{S=1.6} \\ \pm 2.0 &) \times 10^{-5} & \text{S=1.8} \\ \pm 0.5 &) \times 10^{-4} \\ & \times 10^{-5} & \text{CL=95\%} \end{array}$	
Γ ₁₆₅ γη(Γ ₈₇ φη	$(1405/1475) \rightarrow \gamma \rho^{0} \rho^{0}$ (1.7) $\gamma(1405) \rightarrow \phi \eta \pi^{+} \pi^{-}$ (1.7)	± 0.4) × 10 ⁻³ S=1.3 2.0 ±1.0) × 10 ⁻⁵	-
$\psi(2S)$	$ \begin{array}{ccc} \Gamma_{94} & \omega X(1440) \rightarrow & \omega K_S^0 K^- \pi^+ + \\ & \text{c.c.} \\ \Gamma_{95} & \omega X(1440) \rightarrow & \omega K^+ K^- \pi^0 \end{array} $	(1.6 ± 0.4) $\times 10^{-5}$ (1.09 ± 0.26) $\times 10^{-5}$	
BES-II	$ \begin{array}{ccc} \Gamma_{155} & \gamma \eta (1405) \\ \Gamma_{156} & \gamma \eta (1405) \rightarrow & \gamma K \overline{K} \pi \\ \Gamma_{157} & \gamma \eta (1405) \rightarrow & \eta \pi^+ \pi^- \\ \Gamma_{158} & \gamma \eta (1475) \end{array} $	$< 9 imes 10^{-5}$ (3.6 ± 2.5) $ imes 10^{-5}$	CL=90%
	$ \begin{array}{ccc} \Gamma_{159} & \gamma \eta (1475) \rightarrow & K \overline{K} \pi \\ \Gamma_{160} & \gamma \eta (1475) \rightarrow & \eta \pi^+ \pi^- \end{array} \end{array} $		CL=90% CL=90%

$$I^{G}(J^{PC}) = 0^{-}(1^{-})$$

 $J/\psi(1S)$

Г ₁₂₁	$\phi\eta$ (1405) —	$\rightarrow \phi \eta \pi^+ \pi^-$	-	(2.0	\pm 1.0	$) \times 10^{-5}$			
Γ ₂₁₆	$\gamma\eta$ (1405/14	$(75) \rightarrow \gamma k$	KKπ	[d] (2.8	\pm 0.6) × 10 ⁻³	S=1.6		
217	$\gamma\eta$ (1405/14	$(75) \rightarrow \gamma \gamma$	ρ^0	(7.8	\pm 2.0	$) \times 10^{-5}$	S=1.8		
Г ₂₁₈	$\gamma\eta$ (1405/14	(75) $\rightarrow \gamma \eta$	$\pi^+\pi^-$	(3.0	\pm 0.5	$) \times 10^{-4}$			
Г ₂₁₉	$\gamma\eta$ (1405/14	$(75) \rightarrow \gamma \gamma$	ϕ	< 8.2		$ imes 10^{-5}$	CL=95%		
Γ ₂₂₀	$\gamma \eta$ (1405) –	$\rightarrow \gamma \gamma \gamma \gamma$		< 2.63		$ imes 10^{-6}$	CL=90%		
Γ ₂₂₁	$\gamma \eta$ (1475) –	$\rightarrow \gamma \gamma \gamma \gamma$		< 1.86		$ imes 10^{-6}$	CL=90%		
Γ ₂₃₂	$\gamma\eta$ (1405/14	$75) \rightarrow \gamma \rho$	$^{0} ho^{0}$	(1.7	\pm 0.4	$) \times 10^{-3}$	S=1.3		
ψ (2	S) _{Γ107}	$\omega X(1440$	$() \rightarrow \omega K_S^0$	$K^{-}\pi^{+}+$		(1.6	± 0.4) $ imes 1$	0-5	
	Γ ₁₀₈	$\omega X(1440)$	$) \rightarrow \omega K^+$	$K^{-}\pi^{0}$		(1.09	± 0.26) $ imes 1$	0 ⁻⁵	
	Γ_{135}	$\phi\eta$ (1405)	$\rightarrow \phi \pi^+ \pi$	$-\eta$		(8.5	± 1.7) $ imes 1$	0-6	
	Γ ₁₇₄	$\gamma \eta(1405)$							
	Γ ₁₇₅	$\gamma \eta (140)$	$(5) \rightarrow \gamma K \overline{I}$	$\overline{K}\pi$		< 9	$ imes 10^{-1}$	⁻⁵ CL=90%	
	Γ ₁₇₆	$\gamma \eta (140$	$(5) \rightarrow \eta \pi^+$	π^{-}		(3.6 ±	$(2.5) \times 10^{-1}$	-5	
	Γ ₁₇₇	$\gamma \eta (140$	$(5) \rightarrow \gamma f_0(2)$	980) $\pi^0 \rightarrow$	•	< 5.0	× 10 ⁻	-7 CL=90%	
		$\gamma \pi^+$	$+\pi^{-}\pi^{0}$,			BESIII,	PRD96, 112	008(2017)
	Γ ₁₇₈	$\gamma \eta$ (1475)					•		
	Γ ₁₇₉	$\gamma \eta$ (147	$(5) \rightarrow KK$	π		< 1.4	$ imes 10^{-1}$	-4 CL=90%	
	Γ ₁₈₀	$\gamma \eta$ (147	$(5) \rightarrow \eta \pi^+$	π^{-}		< 8.8	$\times 10^{-1}$	⁻⁵ CL=90%	

Invariant mass spectra measured at BES-III

The η(1405) and η(1475) paradox:

- No experimental evidence for η(1405) and η(1475) to be present in the same decay channel!
- One state/two states?
- Where to look for the pseudoscalar glueball?

[W. Qin, Q.Z., and X.H. Zhong, PRD 97, 096002 (2018) , J.J. Wu, X.H. Liu, Q.Z. and B.S. Zou, PRL(2012); X.G. Wu, J.-J. Wu, Q. Z., and B.-S. Zou, PRD87, 014023 (2013), M.-C. Du and Q.Z., PRD100, 036005 (2019)]

2. The presence of the "triangle singularity"

week ending 4 MAY 2012

BES-III Collaboration, Phys. Rev. Lett. 108, 182001 (2012)

• $f_0(980)$ is extremely narrow: $\Gamma \cong 10 \text{ MeV}$! PDG: $\Gamma \cong 40^{\sim}100 \text{ MeV}$.

Anomalously large isospin violation!

$$\frac{Br(\eta(1405) \to f_0(980)\pi^0 \to \pi^+\pi^-\pi^0)}{Br(\eta(1405) \to a_0^0(980)\pi^0 \to \eta\pi^0\pi^0)} \cong (17.9 \pm 4.2)\%$$

"a₀(980)-f₀(980) mixing" gives only ~1% isospin violation effects !

$$g(a_0K^+K^-) g(f_0K^+K^-)$$

= $-g(a_0K^0 \overline{K}^0) g(f_0K^0 \overline{K}^0)$
M(K⁰)-M(K[±]) = m_d - m_u

"Triangle singularity"

Internal KK*(K) approach the on-shell condition simultaneously!

Manifestation of Landau singularity!

J.J. Wu, X.H. Liu, Q.Z. and B.S. Zou, PRL(2012); X.G. Wu, J.-J. Wu, Q. Z., and B.-S. Zou, PRD87, 014023 (2013)

"Exotics" of Type-III: Peak structures caused by kinematic effects, in particular, by triangle singularity.

$$\begin{split} \Gamma_3(s_1, s_2, s_3) \ &= \ \frac{1}{i(2\pi)^4} \int \frac{d^4 q_1}{(q_1^2 - m_1^2 + i\epsilon)(q_2^2 - m_2^2 + i\epsilon)(q_3^2 - m_3^2 + i\epsilon)} \\ &= \ \frac{-1}{16\pi^2} \int_0^1 \int_0^1 \int_0^1 da_1 \, da_2 \, da_3 \, \frac{\delta(1 - a_1 - a_2 - a_3)}{D - i\epsilon} \,, \\ D \ &\equiv \ \sum_{i,j=1}^3 a_i a_j Y_{ij}, \ Y_{ij} \ &= \ \frac{1}{2} \left[m_i^2 + m_j^2 - (q_i - q_j)^2 \right] \qquad \underbrace{P}_{q_3} \ & \underbrace{P}_$$

The TS occurs when all the three internal particles can approach their on-shell condition simultaneously:

$$\partial D/\partial a_j = 0$$
 for all j=1,2,3. \square det $[Y_{ij}] = 0$

L. D. Landau, Nucl. Phys. 13, 181 (1959);

J.J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou, Phys. Rev. Lett. 108, 081003 (2012);
Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013); Phys. Lett. B 725, 106 (2013)
X.-H. Liu, M. Oka and Q. Zhao, PLB753, 297(2016);

F.-K. Guo, C. Hanhart, U.-G. Meissner, Q. Wang, Q. Zhao, B.-S. Zou, arXiv:1705.00141[hep-ph], 23 Rev. Mod. Phys. 90, 015004 (2018); F.K. Guo, X.-H. Liu, S. Sakai, arXiv:1912.07030[hep-ph]

Understanding the width effects from the intermediate K* in $\eta(1405/1475) \rightarrow 3\pi$, K $\pi\pi$, $\eta\pi\pi$

 $a_0(980) - f_0(980)$ mixing is required to be enhanced. However, experimental data do not support large b.r. for $\eta(1405)/\eta(1475) \rightarrow a_0(980)\pi$!

Updated study of $\eta(1405/1475) \rightarrow 3\pi$, K $\pi\pi$, $\eta\pi\pi$ with width effects

• Direct isospin breaking via the TS mechanism

- a0-f0 mixing enhanced by the TS mechanism
 -- Unitarized treatment for a0 and f0;
- -- To separate (b) and (c) allows a self-contained evaluation of the TS and a0-f0 mixing contributions.

a0-f0 mixing at tree level

M.C. Du and Q.Z., PRD100, 036005 (2019). 25 See also N.N. Achasov et al., PRD92, 036003 (2015)

Updated study of η (1405/1475) \rightarrow 3π , K $\pi\pi$, $\eta\pi\pi$ with width effects

η**(1405/1475) →** ηππ

M.C. Du and Q.Z., PRD100, 036005 (2019).

Interferences from the TS mechanism

•The "Triangle Singularity" mechanism can shift the peak positions exclusive channels.

- Different lineshapes in difference channels, i.e. K $\overline{K}\pi$, $\eta\pi\pi$, and 3π .
- •No obvious need for two independent states, η(1405) and η(1475)!

Still the dominance of the TS is present in η (1405/1475) \rightarrow 3π with the width effects

η**(1405/1475) → 3**π

3. Reconsile the the dynamical model calculations with LQCD simulations

A brief status review: Qin, QZ, and Zhong, PRD 97, 096002 (2018)

Stable PG masses from LQCD simulations

Morningstar and Peardon, PRD60, 034509 (1999); Y. Chen et al., PRD73, 014516(2006) Richards, Irving, Gregory, and McNeile (UKQCD), PRD82, 034501 (2010)

N_f = 2 LQCD study on anisotropic lattices

W. Sun et al. [CLQCD], arXiv:1702.08174[hep-lat]

Can mixing bring down the PG mass in a dynamical calc.?

• $\eta(1295)$ and $\eta(1475)$ are the 1st radial excitation between the flavor singlet and octet with I=0.

 $\begin{cases} \eta(1295) = \cos \alpha n\bar{n} - \sin \alpha s\bar{s} \\ \eta(1440) = \sin \alpha n\bar{n} + \cos \alpha s\bar{s} \end{cases}$

• η (1405) is a pseudoscalar glueball candidate which favors to mix with the ground states η (547) and η '(958).

• Caution: Lattice QCD gives the pseudoscalar glueball mass of ~2.4 GeV.

$$\begin{pmatrix} \eta \\ \eta' \\ \eta'' \end{pmatrix} = U \begin{pmatrix} n\bar{n} \\ s\bar{s} \\ G \end{pmatrix} = \begin{pmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{pmatrix} \begin{pmatrix} n\bar{n} \\ s\bar{s} \\ G \end{pmatrix}$$

- G. Li, Q. Zhao, C.H. Chang, JPG35, 055002 (2008); hep-ph/0701020
- C. Thomas, JHEP 0710:026, 2007
- R. Escribano, EPJC65, 467 (2010)
- H.Y. Cheng, H.n. Li and K.F. Liu, PRD79, 014024 (2009)

•

• One can even include η_{c} ($\,$ cc) $\,$ in the mixing scheme.

Constraints on the η and η' , but not strongly on a glueball candidate!

Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011) Re-investigated in Qin, QZ, and Zhong, PRD 97, 096002 (2018) Assuming that the decay constants in the flavor basis follow the same mixing pattern of the particle states, we have

$$\begin{pmatrix} f^{q}_{\eta} & f^{s}_{\eta} & f^{c}_{\eta} \\ f^{q}_{\eta'} & f^{s}_{\eta'} & f^{c}_{\eta'} \\ f^{q}_{G} & f^{s}_{G} & f^{c}_{G} \\ f^{q}_{\eta_{c}} & f^{s}_{\eta_{c}} & f^{c}_{\eta_{c}} \end{pmatrix} = U \begin{pmatrix} f_{q} & 0 & 0 \\ 0 & f_{s} & 0 \\ 0 & 0 & 0 \\ 0 & 0 & f_{c} \end{pmatrix}$$

T. Feldmann, P. Kroll, and B. Stech, PRD 58, 114006 (1998); PLB 449, 339 (1999)

where

$$\begin{split} U(\theta,\phi_G,\phi_Q) &= U_{34}(\theta)U_{14}(\phi_G)U_{12}(\phi_Q)U_{34}(\theta_i), \\ &= \begin{pmatrix} c\theta c\theta_i - s\theta c\phi_G s\theta_i & -c\theta s\theta_i - s\theta c\phi_G c\theta_i & -s\theta s\phi_G c\phi_Q & -s\theta s\phi_G s\phi_Q \\ s\theta c\theta_i + c\theta c\phi_G s\theta_i & -s\theta s\theta_i + c\theta c\phi_G c\theta_i & c\theta s\phi_G c\phi_Q & c\theta s\phi_G s\phi_Q \\ -s\phi_G s\theta_i & -s\phi_G c\theta_i & c\phi_G c\phi_Q & c\phi_G s\phi_Q \\ 0 & 0 & -s\phi_Q & c\phi_Q \end{pmatrix} \end{split}$$

~

The axial vector anomaly is given by the $U_A(1)$ Ward identity:

$$\partial^{\mu}J^{j}_{\mu5} = \partial^{\mu}(\bar{j}\gamma_{\mu}\gamma_{5}j) = 2m_{j}(\bar{j}i\gamma_{5}j) + rac{lpha_{s}}{4\pi}G\tilde{G}$$

The axial vector anomaly can then relate the pseudoscalar meson masses to the flavor singlet pseudoscalar densities and the topological charge density:

$$\begin{split} \langle 0 | \partial^{\mu} J^{j}_{\mu 5} | P \rangle &= M_{P}^{2} f^{j}_{P} \\ \text{re} \qquad M_{P}^{2} \equiv \begin{pmatrix} M_{\eta}^{2} & 0 & 0 & 0 \\ 0 & M_{\eta'}^{2} & 0 & 0 \\ 0 & 0 & M_{G}^{2} & 0 \\ 0 & 0 & 0 & M_{\eta_{c}}^{2} \end{pmatrix} \\ \mathcal{M}_{qsgc} &= U^{\dagger} M_{P}^{2} U \qquad \text{--- (A)} \end{split}$$

wher

And

$$ilde{\mathcal{M}}_{qsgc} = egin{pmatrix} m_{qq}^2 + \sqrt{2}G_q/f_q & m_{sq}^2 + G_q/f_s & m_{cq}^2 + G_q/f_c \ m_{qs}^2 + \sqrt{2}G_s/f_q & m_{ss}^2 + G_s/f_s & m_{cs}^2 + G_s/f_c \ m_{qg}^2 + \sqrt{2}G_g/f_q & m_{sg}^2 + G_g/f_s & m_{cg}^2 + G_g/f_c \ m_{qc}^2 + \sqrt{2}G_c/f_q & m_{sc}^2 + G_c/f_s & m_{cc}^2 + G_c/f_c \end{pmatrix}$$

---- (A)

---- (B)

The equivalence of Eqs. (A) and (B) gives:

$$U^{\dagger} \begin{pmatrix} M_{\eta}^{2} & 0 & 0 & 0 \\ 0 & M_{\eta'}^{2} & 0 & 0 \\ 0 & 0 & M_{G}^{2} & 0 \\ 0 & 0 & 0 & M_{\eta_{c}}^{2} \end{pmatrix} U \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} m_{qq}^{2} + \sqrt{2}G_{q}/f_{q} & m_{sq}^{2} + G_{q}/f_{s} & m_{cq}^{2} + G_{q}/f_{c} \\ m_{qs}^{2} + \sqrt{2}G_{s}/f_{q} & m_{ss}^{2} + G_{s}/f_{s} & m_{cs}^{2} + G_{s}/f_{c} \\ m_{qg}^{2} + \sqrt{2}G_{g}/f_{q} & m_{sg}^{2} + G_{g}/f_{s} & m_{cg}^{2} + G_{g}/f_{c} \\ m_{qc}^{2} + \sqrt{2}G_{c}/f_{q} & m_{sc}^{2} + G_{c}/f_{s} & m_{cc}^{2} + G_{c}/f_{c} \end{pmatrix}$$

with

$$\begin{array}{l}
m_{qq,qs,qg,qc}^{2} \equiv \frac{\sqrt{2}}{f_{q}} \langle 0|m_{u}\bar{u}i\gamma_{5}u + m_{d}\bar{d}i\gamma_{5}d|\eta_{q},\eta_{s},g,\eta_{Q} \rangle \\
m_{sq,ss,sg,sc}^{2} \equiv \frac{2}{f_{s}} \langle 0|m_{s}\bar{s}i\gamma_{5}s|\eta_{q},\eta_{s},g,\eta_{Q} \rangle, \\
m_{cq,cs,cg,cc}^{2} \equiv \frac{2}{f_{c}} \langle 0|m_{c}\bar{c}i\gamma_{5}c|\eta_{q},\eta_{s},g,\eta_{Q} \rangle, \\
G_{q,s,g,c} \equiv \frac{\alpha_{s}}{4\pi} \langle 0|G\tilde{G}|\eta_{q},\eta_{s},g,\eta_{Q} \rangle.
\end{array}$$

This allows a relation for the physical glueball mass and the topological charge density in association with the other constrained parameters:

$$\begin{split} \tilde{\mathcal{M}}_{qsgc}^{31} &= m_{qg}^2 + \sqrt{2}G_g/f_q \\ &= -M_{\eta}^2(c\theta c\theta_i - s\theta c\phi_G s\theta_i)s\theta s\phi_G c\phi_Q + M_{\eta'}^2(s\theta c\theta_i + c\theta c\phi_G s\theta_i)c\theta s\phi_G c\phi_Q - M_G^2 c\phi_G s\phi_G s\theta_i c\phi_Q, \\ \tilde{\mathcal{M}}_{qsgc}^{32} &= m_{sg}^2 + G_g/f_s \\ &= M_{\eta}^2(c\theta s\theta_i + s\theta c\phi_G c\theta_i)s\theta s\phi_G c\phi_Q + M_{\eta'}^2(-s\theta s\theta_i + c\theta c\phi_G c\theta_i)c\theta s\phi_G c\phi_Q - M_G^2 c\phi_G s\phi_G c\theta_i c\phi_Q. \end{split}$$

$$\hat{R}_{31/32} \equiv \frac{\tilde{\mathcal{M}}_{qsgc}^{31}}{\tilde{\mathcal{M}}_{qsgc}^{32}} = \frac{m_{qg}^2 + \sqrt{2}G_g/f_q}{m_{sg}^2 + G_g/f_s} = \hat{R}_{41/42}$$

$$M_G^2 = -\frac{1}{\cos\phi_G \sin\theta_i \cos\phi_Q} \left\{ \frac{\sqrt{2}G_g/f_q}{\sin\phi_G} - \left[-M_\eta^2 (\cos\theta\cos\theta_i - \sin\theta\cos\phi_G\sin\theta_i)\sin\theta\cos\phi_Q + M_{\eta'}^2 (\sin\theta\cos\theta_i + \cos\theta\cos\phi_G\sin\theta_i)\cos\theta\cos\phi_Q \right] \right\}.$$

$$\approx -\frac{1}{\sin\theta_i} \left\{ \frac{\sqrt{2}G_g/f_q}{\sin\phi_G} - M_{\eta'}^2 \sin\theta_i - (M_{\eta'}^2 - M_\eta^2)\sin\theta\cos(\theta + \theta_i) \right\}$$

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_g = -0.054 \text{ GeV}^3$ and $\phi_G = 12^\circ$ fixed. The two quantities, m_{qc}^{2*} and m_{sc}^{2*} involve more complicated issues and are sensitive to m_{cc}^2 and ϕ_G . Further detailed discussions can be found in the context.

f_s/f_q	M_G (GeV)	$m_{qq}^2 ~({\rm GeV})^2$	m^2_{ss}	m_{sg}^2	m_{cg}^2	m_{qc}^{2*}	m_{sc}^{2*}	m_{cq}^2	m_{cs}^2	$G_q ~({\rm GeV})^3$	G_s	G_c
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition: $m^2_{qs,sq} \ll m^2_{qg} \ll m^2_{qq}$

Note:
$$m_{qg}^2 \ll m_{sg}^2$$

 $\hat{R}_{31/32} \equiv \frac{\tilde{\mathcal{M}}_{qsgc}^{31}}{\tilde{\mathcal{M}}_{qsgc}^{32}} = \frac{m_{qg}^2 + \sqrt{2G_g/f_q}}{m_{sg}^2 + G_g/f_s}$

If
$$m_{qg}^2 \sim m_{sg}^2 \ll G_g/f_q \sim G_g/f_s \implies \hat{R}_{31/32} \simeq \sqrt{2}f_s/f_q$$

$$\longrightarrow$$
 $M_G \sim 1.4 \text{ GeV}!$

Inappropriate approx. made in H.-Y. Cheng, H.-n. Li and K.-F. Liu, PRD79, 014024 (2009) Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011)

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_g = -0.054 \text{ GeV}^3$ and $\phi_G = 12^\circ$ fixed. The two quantities, m_{qc}^{2*} and m_{sc}^{2*} involve more complicated issues and are sensitive to m_{cc}^2 and ϕ_G . Further detailed discussions can be found in the context.

f_s/f_q	M_G (GeV)	$m_{qq}^2 ~({ m GeV})^2$	m^2_{ss}	m_{sg}^2	m_{cg}^2	m_{qc}^{2*}	m_{sc}^{2*}	m_{cq}^2	m_{cs}^2	$G_q ~({ m GeV})^3$	G_s	G_c
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition: $m^2_{qs,sq} \ll m^2_{qg} \ll m^2_{qq}$

Note:
$$m_{qg}^2 \ll m_{sg}^2$$

 $\hat{R}_{31/32} \equiv \frac{\tilde{\mathcal{M}}_{qsgc}^{31}}{\tilde{\mathcal{M}}_{qsgc}^{32}} = \frac{m_{qg}^2 + \sqrt{2}G_g/f_q}{m_{sg}^2 + G_g/f_s}$

However, the approximation does not hold for $\hat{R}_{41/42}$.

$$\hat{R}_{41/42} = \frac{m_{qc}^2 + \sqrt{2}G_c/f_q}{m_{sc}^2 + G_c/f_s} \neq \sqrt{2}f_s/f_q$$

Inappropriate approx. made in H.-Y. Cheng, H.-n. Li and K.-F. Liu, PRD79, 014024 (2009) Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011)

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_g = -0.054 \text{ GeV}^3$ and $\phi_G = 12^\circ$ fixed. The two quantities, m_{qc}^{2*} and m_{sc}^{2*} involve more complicated issues and are sensitive to m_{cc}^2 and ϕ_G . Further detailed discussions can be found in the context.

f_s/f_q	M_G (GeV)	$m_{qq}^2 ~({ m GeV})^2$	m_{ss}^2	m_{sg}^2	m_{cg}^2	m_{qc}^{2*}	m_{sc}^{2*}	m_{cq}^2	m_{cs}^2	$G_q ~({ m GeV})^3$	G_s	G_c
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition:

$$m_{qs,sq}^2 \ll m_{qg}^2 \ll m_{qq}^2$$

$$\hat{R}_{31/32} \equiv \frac{\tilde{\mathcal{M}}_{qsgc}^{31}}{\tilde{\mathcal{M}}_{qsgc}^{32}} = \frac{m_{qg}^2 + \sqrt{2}G_g/f_q}{m_{sg}^2 + G_g/f_s}$$

FIG. 1. The physical glueball mass M_G varies with $\phi_G \in (3-25)^\circ$, with $\theta = -11^\circ$, $\phi_Q = 11.6^\circ$, and $f_q = 131$ MeV.

The dependence of G_P on m_{cc}^2 , ϕ_G , and ϕ_Q .

The topological susceptibility can be extracted for the pseudoscalar mesons:

 $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta \rangle = 0.016 \text{ GeV}^3,$ $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta' \rangle = 0.051 \text{ GeV}^3,$ $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta \rangle \approx 0.021 \text{ GeV}^3$ $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta \rangle \approx 0.035 \text{ GeV}^3$ $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta \rangle \approx 0.035 \text{ GeV}^3$ $\langle 0 | \alpha_s G \tilde{G} / (4\pi) | \eta \rangle \approx 0.035 \text{ GeV}^3$ $G_g = -(0.054 \pm 0.008) \text{ GeV}^3$

Low mass pseudoscalar glueball is unlikely to be favored!
Similar conclusion from V. Vento et al.

4. Further evidence for the TS mechanism in pseudoscalar meson radiative decays

 Radiative decays of η(1295) and η(1405/ 1475) into γV
 [Y. Cheng and Q. Zhao, arXiv:2106.12483v1 [hep-ph]

 Further evidence for the TS mechanism in axial vector meson decays
 [M.-C. Du and Q. Zhao, PRD 100, 036005 (2019)]

5. Brief summary

I) We have to alter our view of the pseudoscalar spectrum dramatically even for the 1st radial excitations!

- The η(1405) puzzle is originated from the triangle singularity mechanism.
- The dynamical calculations of the PG mass are consistent with the LQCD expectations if an inappropriate approx. is corrected.
- The evidence of the TS mechanism also exits in the light axial vector meson spectra.

(See a brief status review: Qin, Zhao, and Zhong, PRD 97, 096002 (2018) and Du and Zhao, PRD100, 036005 (2019))

5. Brief summary

II) Where to look for the pseudoscalar glueball candidate?
 Isoscalar pseudoscalars with higher masses above 2 GeV, e.g.
 X(2120), X(2370) ...

[1] W.I. Eshraim et al., PRD 87, 054036 (2013)[2] H.-N. Li, arXiv:2109.04956v1 [hep-ph]

Thanks for your attention!