Recent progress on light pseudoscalar and axial vector meson spectra

Qiang Zhao

Institute of High Energy Physics，CAS zhaoq＠ihep．ac．cn

Workshop on Hadron Structure at High－Energy，High－Luminosity Facilities Oct．25－27，2021，Nanjing

Outline

1. The long-standing $\boldsymbol{\eta}(\mathbf{1 4 0 5}) / \boldsymbol{\eta}(1475)$ puzzle and pseudoscalar glueball search
2. The presence of the "triangle singularity"
3. Reconsile the the dynamical model calculations with LQCD simulations
4. Further evidences for the TS mechanism
5. Brief summary
6. The $\boldsymbol{\eta}(1405) / \boldsymbol{\eta}(1475)$ puzzle and the pseudoscalar glueball search

Hadrons beyond the conventional QM and...

Exotics of Type-I:

 JPC are not allowed by $\bar{Q} \bar{Q}$ configurations, e.g. $0^{-}, 1^{+}$... - Direct observation

Exotics of Type-II:
JPC are the same as $\bar{Q} \overline{\mathrm{Q}}$ configurations

- Outnumbering of conventional QM states?
- Peculiar properties?
"Exotics" of Type-III:
Leading kinematic singularity can cause measurable effects, e.g. the triangle singularity.
- What's the impact?
- How to distinguish a genuine state from kinematic effects?

Exotics of Type II:

The abundance of $0^{-+}(I=0)$ states implies an exotic candidate

Three η states have been listed by Particle Data Group around 1.2 ~ 1.5 GeV :
$\eta(1295), \eta(1405)$, and $\eta(1475)$

The arising of the E-ı puzzle:

E meson was first observed in 1965 in $p \quad \bar{p} \rightarrow(\mathrm{~K} \overline{\mathrm{~K}} \pi) \pi^{+} \pi^{-}$.
Observation of $\mathfrak{l}(1440)$ at Mark II (left, 1980) and Crystal Ball (right, 1982)

Fig. 69. Observation of the $\eta(1440)$ by Mark II and Crystal Ball. (a) Mark II, radiative photon detection required, (b) Mark II, photon detection not required. The events in the shaded region have $m_{\mathrm{kx}}<1.05 \mathrm{GeV}$ ("delta cut"). (c) Crystal Ball, events in the shaded region have $m_{\mathrm{K} \overline{\mathbf{k}}}<1.125 \mathrm{GeV}$.

Confirmation of $\eta(1440)$ at Mark III in 1987

Distorted lineshape?

(a) A single Breit-Wigner fit
(b) Two interfering B-W fit
(c) Coupled channel B-W fit

$$
\begin{aligned}
M & =1416 \pm 8_{-5}^{+7} ; \Gamma=91_{-31-38}^{+67}{ }^{+15} \mathrm{MeV} / c^{2} \\
M & =1490_{-8-6}^{+14+3} ; \Gamma=54_{-21-24}^{+37+13} \mathrm{MeV} / c^{2}
\end{aligned}
$$

Also "confirmed" by Obelix collaboration

- Regge trajectory for the η / η^{\prime} mass spectrum

J.S. Yu, Z.F. Sun, X. Liu, and Q. Z., PRD83, 114007 (2011)

The abundance of $0^{-+}(I=0)$ states implies a glueball candidate?

Positive:

- Flux tube model favors $\mathrm{M}_{\mathrm{G}} \cong 1.4 \mathrm{GeV}$ [1]
- A dynamical model based on $\mathrm{U}_{\mathrm{A}}(1)$ anomaly gives a similar mass [2]. Caveat:
- LQCD favors $\mathrm{M}_{\mathrm{G}} \cong 2.4-2.6 \mathrm{GeV}[3,4,5]$

What can we learn from modern high-precision data? E.g. BESIII, Belle, LHCb...

- How to understand the HUGE difference between the dynamical calculations and LQCD results?
[1] Faddeev, Niemi, and Wiedner, PRD70, 114033 (2004)
[2] H. Y. Cheng, H. n. Li, and K. F. Liu, Phys. Rev. D 79, 014024 (2009)
[3] Morningstar and Peardon, PRD60, 034509 (1999); Y. Chen et al., PRD73, 014516(2006)
[4] Richards, Irving, Gregory, and McNeile (UKQCD), PRD82, 034501 (2010)
[5] W. Sun et al. [CLQCD], arXiv:1702.08174[hep-lat]

η (1405)

$$
\iota^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

$\eta(1405)$ DECAY MODES

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$
Γ_{1}	$K \bar{K} \pi$	seen
Γ_{2}	$\eta \pi \pi$	seen
Γ_{3}	$a_{0}(980) \pi$	seen
Γ_{4}	$\eta(\pi \pi)_{S}$-wave	seen
Γ_{5}	$f_{0}(980) \eta$	seen
Γ_{6}	4π	seen
Γ_{7}	$\rho \rho$	$<58 \%$
Γ_{8}	$\gamma \gamma$	
Γ_{9}	$\rho^{0} \gamma$	seen
Γ_{10}	$\phi \gamma$	
Γ_{11}	$K^{*}(892) K$	seen

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

η (1405) MASS

P.A. Zyla et al. (Particle Data Group),
Prog. Theor. Exp. Phys.
2020, 083C01 (2020)

VALUE (MeV)

DOCUMENT ID
1408.8 ± 2.0 OUR AVERAGE Includes data from the 2 datablocks that follow this one. Error includes scale factor of 2.2. See the ideogram below.

$$
I^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

Apparent inconsistency between the analyses for $\eta(1405)$ and $\eta(1475)$

WEIGHTED AVERAGE
1476 ± 4 (Error scaled by 1.3)

$\eta(1475)$

$$
{ }^{G}\left(J^{P C}\right)=0^{+}\left(0^{-+}\right)
$$

P.A. Zyla et al. (Particle Data Group),
Prog. Theor. Exp. Phys.
2020, 083C01 (2020)

WEIGHTED AVERAGE
1475 ± 4 (Error scaled by 1.4)

	Mode	Fraction $\left(\Gamma_{\boldsymbol{i}} / \Gamma\right)$
Γ_{1}	$K \bar{K} \pi$	seen
Γ_{2}	$K \bar{K}^{*}(892)+$ C.C.	seen
Γ_{3}	$a_{0}(980) \pi$	seen \quad BESIII
Γ_{4}	$\gamma \gamma$	seen
Γ_{5}	$K_{S}^{0} K_{S}^{0} \eta$	possibly seen
Γ_{6}	$\gamma \phi(1020)$	possibly seen

Only a single state is observed in the J / ψ and ψ^{\prime} decays at BESIII

PDG 2016

$$
{ }^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)
$$

$$
\begin{aligned}
& \Gamma_{151} \\
& \Gamma_{152} \\
& \gamma \eta(1405 / 1475) \rightarrow \gamma K \bar{K} \pi \\
& \Gamma_{153} \\
& \gamma \eta(1405 / 1475) \rightarrow \gamma \gamma \rho^{0} \\
& \Gamma_{154} \\
& \gamma \eta(1405 / 1475) \rightarrow \gamma \gamma \phi \\
& \Gamma_{165} \\
& \gamma \eta(1405 / 1475) \rightarrow \gamma \pi^{+} \pi^{-} \\
& \Gamma_{87}
\end{aligned} \phi \eta(1405) \rightarrow \phi \eta \pi^{+} \pi^{-}-1 .
$$

$$
\begin{aligned}
& \text { [d] } \quad\left(\begin{array}{ll}
2.8 & \pm 0.6
\end{array}\right) \times 10^{-3} \\
& \mathrm{~S}=1.6 \\
& \left(\begin{array}{l}
7.8 \pm 2.0) \times 10^{-5}
\end{array}\right. \\
& \mathrm{S}=1.8 \\
& \left(\begin{array}{lll}
3.0 & \pm 0.5
\end{array}\right) \times 10^{-4} \\
& <8.2 \times 10^{-5} \quad \mathrm{CL}=95 \% \\
& \left(\begin{array}{ll}
1.7 & \pm 0.4
\end{array}\right) \times 10^{-3} \quad \mathrm{~S}=1.3 \\
& (2.0 \pm 1.0) \times 10^{-5}
\end{aligned}
$$

$\Gamma_{94} \omega X(1440) \rightarrow \omega K_{S}^{0} K^{-} \pi^{+}+$

$$
\left(\begin{array}{lll}
1.6 & \pm 0.4
\end{array}\right) \times 10^{-5}
$$

$$
\Gamma_{95} \quad \omega X(1440) \rightarrow \omega K^{+} K^{-} \pi^{0}
$$

$$
\left.(1.09 \pm 0.26) \times 10^{-5}\right]
$$

$$
\Gamma_{155} \gamma \eta(1405)
$$

$$
\Gamma_{156} \quad \gamma \eta(1405) \rightarrow \gamma K \bar{K} \pi
$$

$$
<9
$$

BES-II

$$
\left(\begin{array}{ccc}
3.6 & \pm 2.5 &) \times 10^{-5}
\end{array}\right.
$$

$$
\Gamma_{158} \quad \gamma \eta(1475)
$$

$$
\Gamma_{159} \quad \gamma \eta(1475) \rightarrow K \bar{K} \pi
$$

$$
<1.4
$$

$$
\times 10^{-4}
$$

$$
C L=90 \%
$$

$$
\Gamma_{160} \quad \gamma \eta(1475) \rightarrow \eta \pi^{+} \pi^{-}
$$

${ }^{G}\left(J^{P C}\right)=0^{-}\left(1^{--}\right)$

$\Gamma_{121} \phi \eta(1405) \rightarrow \phi \eta \pi^{+} \pi^{-}$	$(2.0 \pm 1.0$) $\times 10^{-5}$	
$\Gamma_{216} \quad \gamma \eta(1405 / 1475) \rightarrow \gamma K K \pi$	[d] (2.8 ± 0.6) $\times 10^{-3}$	$\mathrm{S}=1.6$
$\Gamma_{217} \gamma \eta(1405 / 1475) \rightarrow \gamma \gamma \rho^{0}$	$(7.8 \pm 2.0$	$) \times 10^{-5}$	$\mathrm{S}=1.8$
$\Gamma_{218} \quad \gamma \eta(1405 / 1475) \rightarrow \gamma \eta \pi^{+} \pi^{-}$	$(3.0 \pm 0.5$) $\times 10^{-4}$	
$\Gamma_{219} \gamma \eta(1405 / 1475) \rightarrow \gamma \gamma \phi$	< 8.2	$\times 10^{-5}$	CL=95\%
$\Gamma_{220} \gamma \eta \eta(1405) \rightarrow \gamma \gamma \gamma$	<2.63	$\times 10^{-6}$	CL=90\%
$\Gamma_{221} \gamma \eta(1475) \rightarrow \gamma \gamma \gamma$	< 1.86	$\times 10^{-6}$	$\mathrm{CL}=90 \%$
$\Gamma_{232} \gamma \eta(1405 / 1475) \rightarrow \gamma \rho^{0} \rho^{0}$	$(1.7 \pm 0.4$) $\times 10^{-3}$	$\mathrm{S}=1.3$

$\psi(2 S)$

$$
\begin{aligned}
& \Gamma_{107} \omega X(1440) \rightarrow \omega K_{S}^{0} K^{-} \pi^{+}+ \\
& \left(\begin{array}{ll}
1.6 & \pm .4
\end{array}\right) \times 10^{-5} \\
& \Gamma_{108} \omega \times(1440) \rightarrow \omega K^{+} K^{-} \pi^{0} \\
& (1.09 \pm 0.26) \times 10^{-5} \\
& \Gamma_{135} \phi \eta(1405) \rightarrow \phi \pi^{+} \pi^{-} \eta \\
& \left(\begin{array}{ll}
8.5 & \pm 1.7
\end{array}\right) \times 10^{-6}
\end{aligned}
$$

Invariant mass spectra measured at BES-III

Observation of an Anomalous Line Shape of the $\boldsymbol{\eta}^{\prime} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$Mass Spectrum near the $\boldsymbol{p} \overline{\boldsymbol{p}}$ Mass
Threshold in $J / \psi \rightarrow \gamma \eta^{\prime} \boldsymbol{\pi}^{+} \boldsymbol{\pi}^{-}$

The $\eta(1405)$ and $\eta(1475)$ paradox:

- No experimental evidence for $\eta(1405)$ and $\eta(1475)$ to be present in the same decay channel!
- One state/two states?
- Where to look for the pseudoscalar glueball?
[W. Qin, Q.Z., and X.H. Zhong, PRD 97, 096002 (2018) , J.J. Wu, X.H. Liu, Q.Z. and B.S. Zou, PRL(2012); X.G. Wu, J.-J. Wu, Q. Z., and B.-S. Zou, PRD87, 014023 (2013), M.-C. Du and Q.Z., PRD100, 036005 (2019)]

2. The presence of the "triangle singularity"

First Observation of $\boldsymbol{\eta}(1405)$ Decays into $f_{0}(\mathbf{9 8 0}) \boldsymbol{\pi}^{0}$

Isospin-violating decay of $\mathrm{J} / \psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi \pi \pi$

BES-III Collaboration, Phys. Rev. Lett. 108, 182001 (2012)

- $\mathrm{f}_{0}(980)$ is extremely narrow: $\Gamma \cong 10 \mathrm{MeV}$! PDG: $\Gamma \cong 40 \sim 100 \mathrm{MeV}$.
- Anomalously large isospin violation!

$$
\frac{\operatorname{Br}\left(\eta(1405) \rightarrow f_{0}(980) \pi^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0}\right)}{\operatorname{Br}\left(\eta(1405) \rightarrow a_{0}^{0}(980) \pi^{0} \rightarrow \eta \pi^{0} \pi^{0}\right)}
$$

" $\mathrm{a}_{0}(980)-\mathrm{f}_{0}(980)$ mixing" gives only $\sim 1 \%$ isospin violation effects !

$$
\begin{aligned}
& g\left(\mathrm{a}_{0} \mathrm{~K}^{+} \mathrm{K}^{-}\right) g\left(\mathrm{f}_{0} \mathrm{~K}^{+} \mathrm{K}^{-}\right) \\
= & -g\left(\mathrm{a}_{0} \mathrm{~K}^{0} \mathrm{~K}^{0}\right) g\left(\mathrm{f}_{0} \mathrm{~K}^{0} \overline{\mathrm{~K}}^{0}\right) \\
\mathrm{M}\left(\mathrm{~K}^{0}\right)-\mathrm{M}\left(\mathrm{~K}^{ \pm}\right)= & \mathrm{m}_{\mathrm{d}}-\mathrm{m}_{\mathrm{u}}
\end{aligned}
$$

"Triangle singularity"

Internal $\bar{K} K^{*}(K)$ approach the on-shell condition simultaneously!

Manifestation of Landau singularity!
J.J. Wu, X.H. Liu, Q.Z. and B.S. Zou, PRL(2012);
X.G. Wu, J.-J. Wu, Q. Z., and B.-S. Zou, PRD87, 014023 (2013)

"Exotics" of Type-III:

Peak structures caused by kinematic effects, in particular, by triangle singularity.

$$
\begin{aligned}
\Gamma_{3}\left(s_{1}, s_{2}, s_{3}\right) & =\frac{1}{i(2 \pi)^{4}} \int \frac{d^{4} q_{1}}{\left(q_{1}^{2}-m_{1}^{2}+i \epsilon\right)\left(q_{2}^{2}-m_{2}^{2}+i \epsilon\right)\left(q_{3}^{2}-m_{3}^{2}+i \epsilon\right)} \\
& =\frac{-1}{16 \pi^{2}} \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} d a_{1} d a_{2} d a_{3} \frac{\delta\left(1-a_{1}-a_{2}-a_{3}\right)}{D-i \epsilon}
\end{aligned}
$$

$$
D \equiv \sum_{i, j=1}^{3} a_{i} a_{j} Y_{i j}, \quad Y_{i j}=\frac{1}{2}\left[m_{i}^{2}+m_{j}^{2}-\left(q_{i}-q_{j}\right)^{2}\right]
$$

The TS occurs when all the three internal particles can approach their on-shell condition simultaneously:

$$
\partial D / \partial a_{j}=0 \quad \text { for all } \mathrm{j}=1,2,3 . \quad \square \operatorname{det}\left[Y_{i j}\right]=0
$$

L. D. Landau, Nucl. Phys. 13, 181 (1959);
J.J. Wu, X.-H. Liu, Q. Zhao, B.-S. Zou, Phys. Rev. Lett. 108, 081003 (2012);
Q. Wang, C. Hanhart, Q. Zhao, Phys. Rev. Lett. 111, 132003 (2013); Phys. Lett. B 725, 106 (2013) X.-H. Liu, M. Oka and Q. Zhao, PLB753, 297(2016);
F.-K. Guo, C. Hanhart, U.-G. Meissner, Q. Wang, Q. Zhao, B.-S. Zou, arXiv:1705.00141[hep-ph], 23

Rev. Mod. Phys. 90, 015004 (2018); F.K. Guo, X.-H. Liu, S. Sakai, arXiv:1912.07030[hep-ph]

Understanding the width effects from the intermediate K^{*} in $\eta(1405 / 1475) \rightarrow 3 \pi, \mathrm{~K} \pi \pi, \eta \pi \pi$

$a_{0}(980)-f_{0}(980)$ mixing is required to be enhanced.
However, experimental data do not support large b.r. for $\eta(1405) / \eta(1475) \rightarrow a_{0}(980) \pi!$

Updated study of $\eta(1405 / 1475) \rightarrow 3 \pi, K \bar{\pi} \pi, \eta \pi \pi$ with width effects

(a)

(b)

(c)

- Direct isospin breaking via the TS mechanism
- a0-f0 mixing enhanced by the TS mechanism
-- Unitarized treatment for a0 and f0;
-- To separate (b) and (c) allows a self-contained evaluation of the TS and a0-f0 mixing contributions.
- a0-f0 mixing at tree level
M.C. Du and Q.Z., PRD100, 036005 (2019).

See also N.N. Achasov et al., PRD92, 036003 (2015)

Updated study of $\eta(1405 / 1475) \rightarrow 3 \pi, K \bar{\pi} \pi, \eta \pi \pi$ with width effects

$\eta(1405 / 1475) \rightarrow K \bar{K} \pi$

(a)

(b)

(c)
$\eta(1405 / 1475) \rightarrow \eta \pi \pi$

(b)

Interferences from the TS mechanism

$$
\eta(1405 / 1475) \rightarrow K \bar{K} \pi
$$

(a)

$$
\eta(1405 / 1475) \rightarrow \eta \pi \pi
$$

(a)

(b)
-The "Triangle Singularity" mechanism can shift the peak positions exclusive channels.
-Different lineshapes in difference channels, i.e. $\bar{K} \bar{K} \pi, \eta \pi \pi$, and 3π.

- No obvious need for two independent states, $\eta(1405)$ and $\eta(1475)$!

Still the dominance of the TS is present in $\eta(1405 / 1475)$ $\rightarrow 3 \pi$ with the width effects

3. Reconsile the the dynamical model calculations with LQCD simulations

A brief status review: Qin, QZ, and Zhong, PRD 97, 096002 (2018)

Stable PG masses from LQCD simulations

Morningstar and Peardon, PRD60, 034509 (1999); Y. Chen et al., PRD73, 014516(2006) Richards, Irving, Gregory, and McNeile (UKQCD), PRD82, 034501 (2010)

$\mathrm{N}_{\mathrm{f}}=2$ LQCD study on anisotropic lattices

(a) $m_{\pi} \sim 938 \mathrm{MeV}$

(b) $m_{\pi} \sim 650 \mathrm{MeV}$

	$m_{\pi}(\mathrm{MeV})$	$m_{0++}(\mathrm{MeV})$	$m_{2++}(\mathrm{MeV})$	$m_{0^{-+}}(\mathrm{MeV})$
$N_{f}=2$	938	$1397(25)$	$2367(35)$	$2559(50)$
	650	$1480(52)$	$2380(61)$	$2605(52)$
$N_{f}=2+1[13]$	360	$1795(60)$	$2620(50)$	-
quenched [8]	-	$1710(50)(80)$	$2390(30)(120)$	$2560(35)(120)$
quenched [9]	-	$1730(50)(80)$	$2400(25)(120)$	$2590(40)(130)$

W. Sun et al. [CLQCD], arXiv:1702.08174[hep-lat]

Can mixing bring down the PG mass in a dynamical calc.?

- $\eta(1295)$ and $\eta(1475)$ are the 1st radial excitation between the flavor singlet and octet with $\mathrm{I}=0$.

$$
\left\{\begin{array}{l}
\eta(1295)=\cos \alpha n \bar{n}-\sin \alpha s \bar{s} \\
\eta(1440)=\sin \alpha n \bar{n}+\cos \alpha s \bar{s}
\end{array}\right.
$$

- $\eta(1405)$ is a pseudoscalar glueball candidate which favors to mix with the ground states $\eta(547)$ and $\eta^{\prime}(958)$.
- Caution: Lattice QCD gives the pseudoscalar glueball mass of $\sim 2.4 \mathrm{GeV}$.

$$
\left(\begin{array}{c}
\eta \\
\eta^{\prime} \\
\eta^{\prime \prime}
\end{array}\right)=U\left(\begin{array}{c}
n \bar{n} \\
s \bar{s} \\
G
\end{array}\right)=\left(\begin{array}{lll}
x_{1} & y_{1} & z_{1} \\
x_{2} & y_{2} & z_{2} \\
x_{3} & y_{3} & z_{3}
\end{array}\right)\left(\begin{array}{c}
n \bar{n} \\
s \bar{s} \\
G
\end{array}\right)
$$

- G. Li, Q. Zhao, C.H. Chang, JPG35, 055002 (2008); hep-ph/0701020
- C. Thomas, JHEP 0710:026, 2007
- R. Escribano, EPJC65, 467 (2010)
- H.Y. Cheng, H.n. Li and K.F. Liu, PRD79, 014024 (2009)
- One can even include $\eta_{c}(\bar{c} c)$ in the mixing scheme.

$$
\begin{gathered}
\left(\begin{array}{c}
|\eta\rangle \\
\left|\eta^{\prime}\right\rangle \\
|G\rangle \\
\left|\eta_{c}\right\rangle
\end{array}\right)=U_{34}(\theta) U_{14}\left(\phi_{G}\right) U_{12}\left(\phi_{Q}\right)\left(\begin{array}{c}
\left|\eta_{8}\right\rangle \\
\left|\eta_{1}\right\rangle \\
|g\rangle \\
\left|\eta_{Q}\right\rangle
\end{array}\right), \quad \begin{array}{l}
\begin{array}{l}
\mathbf{M}_{G} \cong 2.4 \mathrm{GeV} \\
\mathbf{M} \eta_{c}=2.98 \mathrm{GeV}
\end{array} \\
U_{34}(\theta)=\left(\begin{array}{cccc}
\cos \theta & -\sin \theta & 0 & 0 \\
\sin \theta & \cos \theta & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad U_{14}\left(\phi_{G}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \phi_{G} & \sin \phi_{G} & 0 \\
0 & -\sin \phi_{G} & \cos \phi_{G} & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \\
U_{12}\left(\phi_{Q}\right)=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & \cos \phi_{Q} & \sin \phi_{Q} \\
0 & 0 & -\sin \phi_{Q} & \cos \phi_{Q}
\end{array}\right) . \quad\left(\begin{array}{c}
\left|\eta_{8}\right\rangle \\
\left|\eta_{1}\right\rangle \\
|g\rangle \\
\left|\eta_{Q}\right\rangle
\end{array}\right)=U_{34}\left(\theta_{i}\right)\left(\begin{array}{c}
\left|\eta_{q}\right\rangle \\
\left|\eta_{s}\right\rangle \\
|g\rangle \\
\left|\eta_{Q}\right\rangle
\end{array}\right)
\end{array},
\end{gathered}
$$

Constraints on the η and η^{\prime}, but not strongly on a glueball candidate!
Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011)

Re-investigated in Qin, QZ, and Zhong, PRD 97, 096002 (2018)

Assuming that the decay constants in the flavor basis follow the same mixing pattern of the particle states, we have

$$
\left(\begin{array}{lll}
f_{\eta}^{q} & f_{\eta}^{s} & f_{\eta}^{c} \\
f_{\eta^{\prime}}^{q} & f_{\eta^{\prime}}^{s} & f_{\eta^{\prime}}^{c} \\
f_{G}^{q} & f_{G}^{s} & f_{G}^{c} \\
f_{\eta_{c}}^{q} & f_{\eta_{c}}^{s} & f_{\eta_{c}}^{c}
\end{array}\right)=U\left(\begin{array}{ccc}
f_{q} & 0 & 0 \\
0 & f_{s} & 0 \\
0 & 0 & 0 \\
0 & 0 & f_{c}
\end{array}\right)
$$

T. Feldmann, P. Kroll, and B. Stech, PRD 58, 114006 (1998); PLB 449, 339 (1999)
where

$$
\begin{aligned}
U\left(\theta, \phi_{G}, \phi_{Q}\right) & =U_{34}(\theta) U_{14}\left(\phi_{G}\right) U_{12}\left(\phi_{Q}\right) U_{34}\left(\theta_{i}\right), \\
& =\left(\begin{array}{cccc}
c \theta c \theta_{i}-s \theta c \phi_{G} s \theta_{i} & -c \theta s \theta_{i}-s \theta c \phi_{G} c \theta_{i} & -s \theta s \phi_{G} c \phi_{Q} & -s \theta s \phi_{G} s \phi_{Q} \\
s \theta c \theta_{i}+c \theta c \phi_{G} s \theta_{i} & -s \theta s \theta_{i}+c \theta c \phi_{G} c \theta_{i} & c \theta s \phi_{G} c \phi_{Q} & c \theta s \phi_{G} s \phi_{Q} \\
-s \phi_{G} s \theta_{i} & -s \phi_{G} c \theta_{i} & c \phi_{G} c \phi_{Q} & c \phi_{G} s \phi_{Q} \\
0 & 0 & -s \phi_{Q} & c \phi_{Q}
\end{array}\right)
\end{aligned}
$$

The axial vector anomaly is given by the $U_{A}(1)$ Ward identity:

$$
\partial^{\mu} J_{\mu 5}^{j}=\partial^{\mu}\left(\bar{j} \gamma_{\mu} \gamma_{5} j\right)=2 m_{j}\left(\bar{j} i \gamma_{5} j\right)+\frac{\alpha_{s}}{4 \pi} G \tilde{G}
$$

The axial vector anomaly can then relate the pseudoscalar meson masses to the flavor singlet pseudoscalar densities and the topological charge density:

$$
\langle 0| \partial^{\mu} J_{\mu 5}^{j}|P\rangle=M_{P}^{2} f_{P}^{j}
$$

where $\quad M_{P}^{2} \equiv\left(\begin{array}{cccc}M_{\eta}^{2} & 0 & 0 & 0 \\ 0 & M_{\eta^{\prime}}^{2} & 0 & 0 \\ 0 & 0 & M_{G}^{2} & 0 \\ 0 & 0 & 0 & M_{\eta_{c}}^{2}\end{array}\right)$
And

$$
\begin{equation*}
\mathcal{M}_{q s g c}=U^{\dagger} M_{P}^{2} U \tag{A}
\end{equation*}
$$

Meanwhile, the axial vector anomaly gives:

$$
\tilde{\mathcal{M}}_{q s g c}=\left(\begin{array}{lll}
m_{q q}^{2}+\sqrt{2} G_{q} / f_{q} & m_{s q}^{2}+G_{q} / f_{s} & m_{c q}^{2}+G_{q} / f_{c} \tag{B}\\
m_{q s}^{2}+\sqrt{2} G_{s} / f_{q} & m_{s s}^{2}+G_{s} / f_{s} & m_{c s}^{2}+G_{s} / f_{c} \\
m_{q g}^{2}+\sqrt{2} G_{g} / f_{q} & m_{s g}^{2}+G_{g} / f_{s} & m_{c g}^{2}+G_{g} / f_{c} \\
m_{q c}^{2}+\sqrt{2} G_{c} / f_{q} & m_{s c}^{2}+G_{c} / f_{s} & m_{c c}^{2}+G_{c} / f_{c}
\end{array}\right)
$$

The equivalence of Eqs. (A) and (B) gives:

with

$$
\begin{aligned}
m_{q q, q s, q g, q c}^{2} & \equiv \frac{\sqrt{2}}{f_{q}}\langle 0| m_{u} \bar{u} i \gamma_{5} u+m_{d} \bar{d} i \gamma_{5} d\left|\eta_{q}, \eta_{s}, g, \eta_{Q}\right\rangle \\
m_{s q, s s, s g, s c}^{2} & \equiv \frac{2}{f_{s}}\langle 0| m_{s} \bar{s} i \gamma_{5} s\left|\eta_{q}, \eta_{s}, g, \eta_{Q}\right\rangle, \\
m_{c q, c s, c g, c c}^{2} & \equiv \frac{2}{f_{c}}\langle 0| m_{c} \bar{c} i \gamma_{5} c\left|\eta_{q}, \eta_{s}, g, \eta_{Q}\right\rangle, \\
G_{q, s, g, c} & \equiv \frac{\alpha_{s}}{4 \pi}\langle 0| G \tilde{G}\left|\eta_{q}, \eta_{s}, g, \eta_{Q}\right\rangle .
\end{aligned}
$$

This allows a relation for the physical glueball mass and the topological charge density in association with the other constrained parameters:

$$
\begin{aligned}
& \tilde{\mathcal{M}}_{q s g c}^{31}=m_{q g}^{2}+\sqrt{2} G_{g} / f_{q} \\
& =-M_{\eta}^{2}\left(c \theta c \theta_{i}-s \theta c \phi_{G} s \theta_{i}\right) s \theta s \phi_{G} c \phi_{Q}+M_{\eta^{\prime}}^{2}\left(s \theta c \theta_{i}+c \theta c \phi_{G} s \theta_{i}\right) c \theta s \phi_{G} c \phi_{Q}-M_{G}^{2} c \phi_{G} s \phi_{G} s \theta_{i} c \phi_{Q}, \\
& \tilde{\mathcal{M}}_{q}^{32 s g}=m_{s g}^{2}+G_{g} / f_{s} \\
& =M_{\eta}^{2}\left(c \theta s \theta_{i}+s \theta c \phi_{G} c \theta_{i}\right) s \theta s \phi_{G} c \phi_{Q}+M_{\eta^{\prime}}^{2}\left(-s \theta s \theta_{i}+c \theta c \phi_{G} c \theta_{i}\right) c \theta s \phi_{G} c \phi_{Q}-M_{G}^{2} c \phi_{G} s \phi_{G} c \theta_{i} c \phi_{Q} . \\
& \hat{R}_{31 / 32} \equiv \frac{\tilde{\mathcal{M}}_{q s g c}^{31}}{\tilde{\mathcal{M}}_{q s g c}^{32}}=\frac{m_{q g}^{2}+\sqrt{2} G_{g} / f_{q}}{m_{s g}^{2}+G_{g} / f_{s}}=\hat{R}_{41 / 42} \\
& M_{G}^{2}=-\frac{1}{\cos \phi_{G} \sin \theta_{i} \cos \phi_{Q}}\left\{\frac{\sqrt{2} G_{g} / f_{q}}{\sin \phi_{G}}-\left[-M_{\eta}^{2}\left(\cos \theta \cos \theta_{i}-\sin \theta \cos \phi_{G} \sin \theta_{i}\right) \sin \theta \cos \phi_{Q}\right.\right. \\
& \left.\left.+M_{\eta^{\prime}}^{2}\left(\sin \theta \cos \theta_{i}+\cos \theta \cos \phi_{G} \sin \theta_{i}\right) \cos \theta \cos \phi_{Q}\right]\right\} \text {. } \\
& \approx-\frac{1}{\sin \theta_{i}}\left\{\frac{\sqrt{2} G_{g} / f_{q}}{\sin \phi_{G}}-M_{\eta^{\prime \prime}}^{2} \sin \theta_{i}-\left(M_{\eta^{\prime}}^{2}-M_{\eta}^{2}\right) \sin \theta \cos \left(\theta+\theta_{i}\right)\right\}
\end{aligned}
$$

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_{g}=-0.054 \mathrm{GeV}^{3}$ and $\phi_{G}=12^{\circ}$ fixed. The two quantities, $m_{q c}^{2 *}$ and $m_{s c}^{2 *}$ involve more complicated issues and are sensitive to $m_{c c}^{2}$ and ϕ_{G}. Further detailed discussions can be found in the context.

f_{s} / f_{q}	$M_{G}(\mathrm{GeV})$	$m_{q q}^{2}(\mathrm{GeV})^{2}$	$m_{s s}^{2}$	$m_{s g}^{2}$	$m_{c g}^{2}$	$m_{q c}^{2 *}$	$m_{s c}^{2 *}$	$m_{c q}^{2}$	$m_{c s}^{2}$	$G_{q}(\mathrm{GeV})^{3}$	G_{s}	G_{c}
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition: $m_{q s, s q}^{2} \ll m_{q g}^{2} \ll m_{q q}^{2}$

$$
\text { Note: } m_{q g}^{2} \ll m_{s g}^{2}
$$

$$
\hat{R}_{31 / 32} \equiv \frac{\tilde{\mathcal{M}}_{q s g c}^{31}}{\tilde{\mathcal{M}}_{q s g c}^{32}}=\frac{m_{q g}^{2}+\sqrt{2} G_{g} / f_{q}}{m_{s g}^{2}+G_{g} / f_{s}}
$$

If $m_{q g}^{2} \sim m_{s g}^{2} \ll G_{g} / f_{q} \sim G_{g} / f_{s} \quad \longleftrightarrow \hat{R}_{31 / 32} \simeq \sqrt{2} f_{s} / f_{q}$
$\square M_{G} \sim 1.4 \mathrm{GeV}$!
Inappropriate approx. made in
H.-Y. Cheng, H.-n. Li and K.-F. Liu, PRD79, 014024 (2009)
Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011)

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_{g}=-0.054 \mathrm{GeV}^{3}$ and $\phi_{G}=12^{\circ}$ fixed. The two quantities, $m_{q c}^{2 *}$ and $m_{s c}^{2 *}$ involve more complicated issues and are sensitive to $m_{c c}^{2}$ and ϕ_{G}. Further detailed discussions can be found in the context.

f_{s} / f_{q}	$M_{G}(\mathrm{GeV})$	$m_{q q}^{2}(\mathrm{GeV})^{2}$	$m_{s s}^{2}$	$m_{s g}^{2}$	$m_{c g}^{2}$	$m_{q c}^{2 *}$	$m_{s c}^{2 *}$	$m_{c q}^{2}$	$m_{c s}^{2}$	$G_{q}(\mathrm{GeV})^{3}$	G_{s}	G_{c}
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition: $m_{q s, s q}^{2} \ll m_{q g}^{2} \ll m_{q q}^{2}$

$$
\text { Note: } m_{q g}^{2} \ll m_{s g}^{2}
$$

$$
\hat{R}_{31 / 32} \equiv \frac{\tilde{\mathcal{M}}_{q s g c}^{31}}{\tilde{\mathcal{M}}_{q s g c}^{32}}=\frac{m_{q g}^{2}+\sqrt{2} G_{g} / f_{q}}{m_{s g}^{2}+G_{g} / f_{s}}
$$

However, the approximation does not hold for $\hat{R}_{41 / 42}$.

$$
\hat{R}_{41 / 42}=\frac{m_{q c}^{2}+\sqrt{2} G_{c} / f_{q}}{m_{s c}^{2}+G_{c} / f_{s}} \neq \sqrt{2} f_{s} / f_{q}
$$

Inappropriate approx. made in
H.-Y. Cheng, H.-n. Li and K.-F. Liu, PRD79, 014024 (2009)
Y.-D. Tsai, H.-n. Li and Q.Z., PRD85, 034002 (2011)

With the LQCD results for the topological charge density, we can fit the parameters:

TABLE I. The numerical values of all the parameters with $G_{g}=-0.054 \mathrm{GeV}^{3}$ and $\phi_{G}=12^{\circ}$ fixed. The two quantities, $m_{q c}^{2 *}$ and $m_{s c}^{2 *}$ involve more complicated issues and are sensitive to $m_{c c}^{2}$ and ϕ_{G}. Further detailed discussions can be found in the context.

f_{s} / f_{q}	$M_{G}(\mathrm{GeV})$	$m_{q q}^{2}(\mathrm{GeV})^{2}$	$m_{s s}^{2}$	$m_{s g}^{2}$	$m_{c g}^{2}$	$m_{q c}^{2 *}$	$m_{s c}^{2 *}$	$m_{c q}^{2}$	$m_{c s}^{2}$	$G_{q}(\mathrm{GeV})^{3}$	G_{s}	G_{c}
1.2	2.1	0.055	0.45	-0.041	-0.81	0.87	0.50	-0.24	-0.15	0.060	0.035	-0.092
1.3	2.1	0.0012	0.47	-0.067	-0.81	0.87	0.46	-0.25	-0.15	0.065	0.035	-0.092

where we have applied the condition: $\quad m_{q s, s q}^{2} \ll m_{q g}^{2} \ll m_{q q}^{2}$

FIG. 1. The physical glueball mass M_{G} varies with $\phi_{G} \in$ $(3-25)^{\circ}$, with $\theta=-11^{\circ}, \phi_{Q}=11.6^{\circ}$, and $f_{q}=131 \mathrm{MeV}$.

The dependence of G_{P} on $m_{c c}^{2}, \phi_{G}$, and ϕ_{Q}
$\phi_{G}=12^{\circ}$ and $\phi_{Q}=11.6^{\circ}$

$$
\phi_{G}=12^{\circ} \text { and } m_{c c}^{2}=M_{\eta_{c}}^{2}
$$

The topological susceptibility can be extracted for the pseudoscalar mesons:

$$
\left\{\begin{aligned}
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)|\eta\rangle & =0.016 \mathrm{GeV}^{3}, \\
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)\left|\eta^{\prime}\right\rangle & =0.051 \mathrm{GeV}^{3}, \\
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)|G\rangle & =-0.084 \mathrm{GeV}^{3}, \\
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)\left|\eta_{c}\right\rangle & =-0.079 \mathrm{GeV}^{3},
\end{aligned}\right.
$$

LQCD results:

$$
\left\{\begin{array}{l}
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)|\eta\rangle \approx 0.021 \mathrm{GeV}^{3} \\
\langle 0| \alpha_{s} G \tilde{G} /(4 \pi)\left|\eta^{\prime}\right\rangle \approx 0.035 \mathrm{GeV}^{3} \\
G_{g}=-(0.054 \pm 0.008) \mathrm{GeV}^{3}
\end{array}\right.
$$

- Low mass pseudoscalar glueball is unlikely to be favored!
- Similar conclusion from V. Vento et al.

4. Further evidence for the TS mechanism in pseudoscalar meson radiative decays

- Radiative decays of $\eta(1295)$ and $\eta(1405 /$ 1475) into γV
[Y. Cheng and Q . Zhao, arXiv:2106.12483v1 [hep-ph]

(b)

5. Brief summary

I) We have to alter our view of the pseudoscalar spectrum dramatically even for the 1st radial excitations!

- The $\eta(1405)$ puzzle is originated from the triangle singularity mechanism.
- The dynamical calculations of the PG mass are consistent with the LQCD expectations if an inappropriate approx. is corrected.
- The evidence of the TS mechanism also exits in the light axial vector meson spectra.
(See a brief status review: Qin, Zhao, and Zhong, PRD 97, 096002 (2018) and Du and Zhao, PRD100, 036005 (2019))

5. Brief summary

II) Where to look for the pseudoscalar glueball candidate? Isoscalar pseudoscalars with higher masses above 2 GeV , e.g. X(2120), X(2370) ...

BESIII, PRL 106, 072002 (2011)

[1] W.I. Eshraim et al., PRD 87, 054036 (2013)
[2] H.-N. Li, arXiv:2109.04956v1 [hep-ph]

BESIII, PRD103, 012009 (2021)

Institute of High Energy Physics

Thanks for your attention！

