The analysis of $Bs \rightarrow \phi \nu \bar{\nu}$ At CEPC

2021 - 09 - 08

The SnowMass Group: Yudong Wang, Lingfeng Li, Manqi Ruan, Yanyun Duan, Tao Liu, Taifan Zheng

Outline

- 1. Introduction and Motivation
- 2. Signal and background
- 3. Reconstruction of ϕ
- 4. Missing energy and missing mass
- 5. Results and conclusion

Motivation

- Large statistics for the heavy hadron ($B_s, B_c, \Lambda_b...$) meanwhile clean background.
- Free from strong interaction and not affected by non-factorizable corrections thus theoretically cleaner compared to b → sℓℓ transitions (exist multiple anomalies)
- Verify the SM mechanism and provide opportunity to explore new physics.
- Performance some benchmark of simulation at CEPC (charged lepton identify, vertex reconstruction, energy and momentum resolution).

Physics of $b \rightarrow s \nu \bar{\nu}$

The effective Hamiltonian for $b \rightarrow s \nu \bar{\nu}$ transitions in the SM reads

$$\mathcal{H}_{\rm eff}^{\rm SM} = -\frac{4\,G_F}{\sqrt{2}} V_{tb} V_{ts}^* C_L^{\rm SM} \mathcal{O}_L + \text{h.c.} \,,$$

Beyond the SM, a second operator can appear in the effective low-energy Hamiltonian

$$\mathcal{H}_{\text{eff}} = -\frac{4 G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(C_L \mathcal{O}_L + C_R \mathcal{O}_R \right) + \text{h.c.},$$

$$\mathcal{O}_L = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_L b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu) , \qquad \mathcal{O}_R = \frac{e^2}{16\pi^2} (\bar{s}\gamma_\mu P_R b) (\bar{\nu}\gamma^\mu (1-\gamma_5)\nu) .$$

Relation between BSM and SM for inclusive branch

$$\frac{\mathrm{BR}(B_s \to \phi \nu \bar{\nu})}{\mathrm{BR}(B_s \to \phi \nu \bar{\nu})_{\mathrm{SM}}} = R(\frac{C_L}{C_R})$$

 F_L determines the kinematic distribution of $\phi \rightarrow K^+K^-$ decays as

$$\frac{d\Gamma}{d\cos\theta} = \frac{3}{4}(1 - F_L)\sin^2\theta + \frac{3}{2}F_L\cos^2\theta$$

where $\theta \in [0,\pi)$ is the angle between the K⁺ and B_s flight directions in the ϕ rest frame

 $F_{L,SM} = 0.53 \pm 0.04$

By the calculation of LingFeng, which take both theoretical uncertainties and their correction into consideration

 $BR \left(B_s \to \phi \nu \bar{\nu} \right)_{SM} = (9.9 \pm 0.7) \times 10^{-6}$

The Signal Topology

Number of signal decay by SM prediction at CEPC :

 $N(B_s \to \phi \nu \bar{\nu}) \sim 3.0 \times 10^5$

The analysis strategy

- The signal-hemisphere choice and ϕ reconstruction
- The kinematics of ϕ and other final state (charge lepton)
- The kinematics of missing states
- BDT method of TMVA

ϕ reconstruction

Reconstruct the decay $\phi(1020) \rightarrow K^+K^-$

- $Br(\phi \rightarrow K^+K^-) = 49.2 \%$
- Take oppositely charged tracks pair in the jet chamber
- Employ the kinematic fit package for ILC to reconstruct the secondary vertex
- Form their invariant mass window

$$|M_{trk1,trk2} - M_{\phi}| < 0.01 \text{ GeV}$$

The ϕ reconstruction efficiency and purity are defined to reflect the results

 $\epsilon = \frac{\text{Number of correctly selected track pair candidates}}{\text{Number of } \phi \to K^+K^- \text{ events}}$

 $= \frac{\text{Number of correctly selected track pair candidates}}{\text{Number of selected track pair candidates}}$

ϕ reconstruction

Integrated efficiency and purity are 0.985, 0.756

Further requirements for signal ϕ : 1) Located at the signal hemisphere. 2) The impact parameters of both Kaon pair tracks are larger than 0.01 mm. 3) The distance of ϕ decay vertex to interact point(IP) is larger than 0.4 mm.

Kinematics of $\nu\bar{\nu}$

Indirect measurement by the full reconstruction

- The total energy
- Missing energy

a). In the signal-hemisphere, the ϕ energy ratio. ($\alpha_1 = E_{\phi}/E_{sig}$)

b). The missing energy ratio in the signalhemisphere. ($\alpha_2 = E_{sig}/E_{beam}$ and $E_{asymmetry}$)

c). The direction that missing momentum *i* . *e* . $(1 - \alpha_1)/\theta_{\langle P_{\phi}, P_{miss} \rangle}$

d). The correctional signal energy of B_s and mass of $\nu \bar{\nu}$

Missing Energy Resolution

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E}} \oplus b$$

$$\frac{\delta E_{miss}}{E_{miss}} = \frac{E_{miss}^{Reco} - E_{miss}^{Gen}}{E_{miss}^{Gen}} = \frac{E}{\sqrt{s} - E} (\frac{a}{\sqrt{E}} \oplus b)$$

Resolution: Fit by double-side crystal ball function

Analysis of $\nu\bar{\nu}$ System

A correctional signal B_s energy and invariant mass of $\nu\bar{\nu}$

$$\hat{P}_{B_s} = \hat{V}_{B_s} (\hat{P}_{B_s} = \hat{P}_{\phi} \text{ if } |V_{\phi}| < 0.02 \text{mm}),$$

$$E_{B_s} = E_{beam} - E_{track} - E_{neutral} + E_{\phi},$$

$$|P_{B_s}| = \sqrt{E_{B_s}^2 - M_{B_s}^2}, \longrightarrow 5.367 \text{ GeV}$$

$$M_{\nu\nu} = \sqrt{(p_{B_s} - p_{\phi})^2} (\text{or} - \sqrt{-(p_{B_s} - p_{\phi})^2})$$

Best choice : Fit the signal B_s mass

- No good method to fit by the only ϕ information
- No good resolution for missing momentum v.s. $\nu\nu$ momentum

Alternative way :

• Use the truth B_s mass to deduce other variables in this algorithm

Replace E_{beam} in the above equation by E_{sig} and get a more precise E_{B_s} and $M_{\nu\nu}$ Repeat this process any times until get a good results

Analysis of $\nu\bar{\nu}$ System

The typical reconstruction error for $q^2(m_{\nu\nu}^2)$ and E_{B_s} are 2.5 GeV² and 1.7 GeV, respectively.

Any strategy to improve the missing momentum resolution?

GeV

12

Cut chain and result

Cuts	$B_s \to \phi \nu \bar{\nu}$	$u\bar{u} + d\bar{d} + s\bar{s}$	$car{c}$	$b\overline{b}$	total bkg	$\sqrt{S+B}/S$ (%)
CEPC events $(10^{12}Z)$	$3.03 imes 10^5$	4.28×10^{11}	1.20×10^{11}	1.51×10^{11}	$6.99 imes 10^{11}$	276
$^*N^{\mathrm{sig}}_{\phi(ightarrow K^+K^-)}>0$	$9.00 imes 10^4$	$1.39 imes 10^9$	1.55×10^9	$3.14 imes 10^9$	$6.08 imes 10^9$	86.7
Energy asymmetry $> 8 \text{ GeV}$	$7.61 imes 10^4$	$2.97 imes10^8$	$3.61 imes 10^8$	$9.05 imes10^8$	$1.56 imes 10^9$	51.9
Energy total $< 85 \text{ GeV}$	$7.36 imes 10^4$	$6.28 imes 10^7$	$1.16 imes 10^8$	$4.65 imes 10^8$	$6.44 imes 10^8$	34.5
$E_{B_s}^N > 28 {\rm GeV}$	$6.40 imes 10^4$	$1.77 imes 10^7$	$3.03 imes10^7$	$8.83 imes10^7$	$1.36 imes 10^8$	18.2
$\alpha < 1.0$	$4.34 imes 10^4$	$6.22 imes 10^6$	$6.42 imes 10^6$	$1.00 imes 10^7$	$2.26 imes 10^7$	11.0
b-tag > 0.6	$3.34 imes 10^4$	$< 2.0 \times 10^4$	$2.54 imes 10^5$	$6.44 imes 10^6$	$6.69 imes10^6$	7.76
$E_{\mu} < 1.2 \text{ GeV} \text{ and } E_e < 1.2 \text{ GeV}$	$3.02 imes 10^4$	-	$1.08 imes 10^5$	$2.33 imes10^6$	$2.44 imes 10^6$	5.20
$(1-lpha_1)/ heta_\phi^{ m miss} < 2.0$	$2.04 imes 10^4$	-	$2.82 imes 10^4$	$4.53 imes 10^5$	$4.81 imes 10^5$	3.47
BDT response > 0.20	$1.30 imes 10^4$	-	$< 1.0 \times 10^{3}$	$1.65 imes 10^4$	$< 1.75 \times 10^4$	1.34
Efficiency	4.29%	-	$< 8 \times 10^{-9}$	1.09×10^{-7}	2.36×10^{-8}	

^{*} The signal ϕ here is required to satisfy the following conditions : 1) Located at the signal hemisphere. 2) The impact parameters of both Kaon pair tracks are larger than 0.01 mm. 3) The distance of ϕ decay vertex to interact point(IP) is larger than 0.4 mm.

TABLE III: The cut chain for the signal and $q\bar{q}$ with full simulation samples and scaled to the integrated luminosity to $10^{12}Z$ bosons at CEPC.

Always companied charged lepton produced in the signal-hemi, benefit from the optimism for the low energy lepton identify?

Charged lepton (muon and electron) identify by DanYu.

The semi-leptonic decay background performance

 0.53 ± 0.04 (SM) ± 0.04 (reco)

Summary

- By 10^{12} Z decay, CEPC will produce $1.5 \times 10^{11} b\bar{b}$ and 3.0×10^5 signals ($B_s \to \phi \nu \bar{\nu}$) by SM prediction
- B_s Statistics : More than 5 higher order compared to current measurement
- Expected accuracy

About 1.34 % for the branch ratio

• ϕ longitudinal polarization fraction $F_{L,SM}$ measurements

 $F_L = 0.53 \pm 0.04 \text{ (SM)} \pm 0.04 \text{ (reco)}$

- Potential optimization and detector requirement.
 - Charged lepton identify at low energy region (< 1.2 GeV)
 - The missing energy and momentum resolution : are largely determined by the hadronic final states
 - Study of the flavor rare decay processes of B_s , B_c and Λ_b at CEPC are expected

End Thanks

Luminosity and Statistics

CEPC scheme

operation mode	Z factory	WW threshold scan	Higgs factory	
center-of-mass energy (GeV)	91.2	160	240	
running time (yeas)	2	1	7	
$L (10^{34} cm^{-2} s^{-1})$	32	10	3	
intergrated luminosity (ab^{-1})	16	2.6	5.6	
Higgs yield	-	-	10^{6}	
W yield	-	10^{7}	10^{8}	
Z yield	10^{12}	10^{8}	10^{8}	

Provides unique opportunities for various flavor measurements $Z \rightarrow b\overline{b} \qquad : \sim 1.5 \times 10^{11}$ $Z \rightarrow c\overline{c} \qquad : \sim 1.2 \times 10^{11}$ $Z \rightarrow \tau^{+}\tau^{-} \qquad : \sim 3.37 \times 10^{10}$

Huge B flavor physics potential of Tera-Z, especially B_s , B_c and Λ_b ...

Channel	Belle II	LHCb	$\operatorname{Giga-}Z$	Tera- Z	$10 \times \text{Tera-}Z$
$B^0, ar{B}^0$	$5.3 imes 10^{10}$	$\sim 6 \times 10^{13}$	$1.2 imes 10^8$	1.2×10^{11}	1.2×10^{12}
B^{\pm}	$5.6 imes10^{10}$	$\sim 6 imes 10^{13}$	$1.2 imes 10^8$	1.2×10^{11}	$1.2 imes 10^{12}$
$B_s,ar{B}_s$	$5.7 imes 10^8$	$\sim 2 imes 10^{13}$	$3.2 imes 10^7$	$3.2 imes 10^{10}$	$3.2 imes10^{11}$
B_c^{\pm}	-	$\sim 2 imes 10^{11}$	$2.2 imes 10^5$	$2.2 imes 10^8$	$2.2 imes10^9$
$\Lambda_b, ar\Lambda_b$	-	$\sim 2 imes 10^{13}$	$1.0 imes 10^7$	$1.0 imes 10^{10}$	$1.0 imes10^{11}$

Events Analysis By ϕ

Now, we have a leading ϕ with its momentum and vertex

Define the scaleless variables $\alpha_1 = \frac{E_{\phi}}{E_{vis}^{sig}}$ and $\alpha_2 = \frac{E_{vis}^{sig}}{E_{beam}}$

 E_{vis}^{sig} is the energy of signal-hemisphere and $E_{beam} = 45.6 \text{ GeV}$

 α_1 and α_2 show the strong correlation via missing energy, signal-hemi energy and ϕ energy.

Significant difference of $\alpha_2 - \alpha_1$ distribution for background and signal events.

Events Analysis By ϕ

Mostly background (more than 99 %) could be rejected Amount of remain background still be large compared to signal Loose boundary defined by

$$\alpha = \frac{\alpha_2}{\alpha_1} = \frac{(E_{vis}^{sig})^2}{E_{\phi} \cdot E_{beam}} = 1.0$$

The accuracy of α depend on the energy resolution (about 4 % in CEPC baseline full simulation)

Analysis

Charged Lepton Identify

No charged lepton generated in the signal hemisphere for signal decay

Main background usually generated accompanied with a charged lepton

Good performance 102 for the charged lepton 100 mis-id to muon(single) as the energy larger 3 mis-id to electron(single) mis-id rate(%) 98 mis-id to muon(jet) than 1 GeV eff(%) mis-id to electron(jet) 2 electron eff (single) Normalized Entries 94 Signal muon eff (single) qq **10**⁻¹ electron eff (jet) 92 muon eff (jet) 10^{-2} 90 20 E[GeV] 10 30 40 30 10 20 0 0 10⁻³ E[GeV] 10-4 Charged lepton (muon and electron) identify by DanYu. 0.2 0.4 0.6 0.8

Samples satisfy $N_{\phi} > 0$ and $\alpha < 1.0$

 $\log_{10}(E_{e}+1)$

The Background

Generator : CEPC official - whizard-1.9.5

General background

- The $q\bar{q}$ events especially the heavy-flavor $b\bar{b}$ and $c\bar{c}$
- $10^6 \sim 10^7$ full simulation samples for each channel

Main background

• The semi-leptonic decay of $B^{(*)}$ or $D^{(*)}$ decay

 $b\bar{b}: b \to B(B^*) \to D(D^*)\ell\nu_\ell$ with $D(D^*) \to \phi X$

- One or more ϕ produced and decay to K^+K^- pair
- Significant missing energy

• Full simulation samples generated corresponding to $\sim 3 \times 10^8$ for each heavy-flavor channel

At CEPC, with $1.5 \times 10^{11} b\bar{b}$ events, the expected advance?

- More than 5 higher order magnitude of luminosity than current limit (2.844 $\times 10^{6}$ $e^+e^- \rightarrow Z$)
- At least 2-3 order optimization for the branch limit
- Test the SM prediction precisely