Jet Charge & Background Estimation for Flavor Physics

CEPC Day 2021/09/22

By: Dan YU

Plan

- Current status & highlights (Jet Charge)
- Bkg estimation & theorists' feedbacks
- Summary

CEPC TeraZ

- High lumi: 10^12 Z bosons
- 91.2GeV: Boosted decay products
- Clean environment
 - low QCD bkg
 - no pile-ups
 - fixed Ecm
 - precise detector system & reconstruction algorithm

Activities

- Whitepaper
 - kick-off 2021/06/16
 - monthly meeting
- Current:
 - scratch with key information for each chapter
- Expected in I year

Contents

1	Introduction	1
2	Description of CEPC facility	1
	2.1 Key Collider Features for Flavor Physics	2
	2.2 Key Detector Features for Flavor Physics	2
3	Charged Current Semileptonic and Leptonic b Decays	3
4	Rare/Penguin and Forbidden b Decays	4
	4.1 Dileptonic Modes	5
	4.2 Neutrino Modes	5
	4.3 Radiative Modes	6
	4.4 Lepton Flavor Violating (LFV), Lepton Number Violating(LNV) and Baryon	
	Number Violating (BNV) Decays	6
5	Hadronic b Decays and CP Violation Measurements	7
6	Spectroscopy and Exotics	8
$\overline{7}$	Charm Physics	9
8	τ Physics	9
9	Flavor Physics at Higher Energies	10
	9.1 Flavor Physics from Z Decays	11
	9.2 Flavor Physics from W Decays	11
	9.3 Flavor Physics from Higgs and Top	12
10	Two Photon and ISR Physics with Heavy Flavors	12
11	Summary	13

White Paper

- Key points to delivery
 - Advantage on physics potential
 - Requirements on detector
- For each session
 - Benchmarks & interpretation
 - Accuracies: backgrounds estimation

Performances for Physics objects

- Acceptance: $|\cos(\theta)| < 099$
- Tracks:
 - Pt threshold, ~ 100 MeV
 - δp/p ~ o(0.1%)
- Photons:
 - Energy threshold, ~ 100 MeV
 - δE/E: 3 I 5%/sqrt(E)
- Pi-Kaon separation: 3-sigma
- Pi-0: rec. eff*purity @ Z→qq > 60%
 @ 5GeV

- Jet charge: eff*(1-2ω)2 ~ 15%/30%
 @Z→bb/cc
- B-tagging: eff^{*}purity @ Z→qq: 70%
- C-tagging: eff*purity @ Z→qq: 40%
- Lepton inside jets: eff*purity @ Z→qq ~ 90% (energy > 3 GeV)
- Tau: eff*purity @ WW→tauvqq: 70%, mis id from jet fragments ~ o(1%)
- Reconstruction of simple combinations: Ks/Lambda/D with all tracks @ Z→qq: 60/75 – 80/85%
- BMR: 3.7%
- Missing Energy: Consistent with BMR

• use leading particle information

Work by Hanhua Cui

 $Z \rightarrow b\bar{b}$ Percent of final charged leading particles of b jet and \bar{b} jet

 $ar{b}$ jet

• use leading particle information

Work by Hanhua Cui

 $Z \rightarrow c\bar{c}$ Percent of final charged leading particles of c jet and \bar{c} jet

c jet

 \bar{c} jet

Work by Hanhua Cui

percent bbar jet → b jet ↓	Bo	B+	₿₅⁰	B _c +	∧₀bar	others	all
Bºbar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅⁰bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
۸ _b	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

• Effective tagging power: take misjudgment rate ω and efficiency into account

Main results:

- For $Z \rightarrow b\bar{b}$ at Truth level:
 - Using only charge verse, effective tagging power = 0.127
 - Using also charge same, effective tagging power = 0.137
- For $Z \rightarrow c\bar{c}$ at Truth level:
 - Using only charge verse, effective tagging power = 0.282
 - Using also charge same, effective tagging power = 0.301

- Next:
 - Use also information from the next to leading particles
 - focus on some physics channels and do some specific analysis
 - ex: use prompt kaon information in Bs
 - Machine learning

Earlier Estimation

- LFV: Mogens Dam (arxiv:1811.09408)
- Z hadronic decays: Shan Cheng, Qin Qin and Fu-Sheng YU
 - Section 8.3

Decay mode	Branching ratio	CEPC Uncertainty
$Z \to J/\psi\gamma$	8.02×10^{-8} [29]	$\sim 1.8\%$
$Z \to \Upsilon(1S)\gamma$	5.39×10^{-8} [29]	$\sim 3.4\%$
$Z \to \rho^0 \gamma$	$4.19 \times 10^{-9} \ [29]$	$\sim 1.8\%$
$Z \to \omega \gamma$	2.82×10^{-8} [29]	$\sim 0.8\%$
$Z \to \phi \gamma$	1.04×10^{-8} [29]	$\sim 1.6\%$
$Z \to \pi^0 \gamma$	9.80×10^{-12} [29]	$< 3.4 \times 10^{-8}$
$Z \to \eta \gamma$	$0.1 - 1.7 \times 10^{-10} [30]$	$\sim 12\% - 50\%$
$Z \to \eta' \gamma$	$3.1 - 4.8 \times 10^{-9} [30]$	$\sim 2.7 - 3.4\%$

Decay	Present bound	FCC-ee sensitivity	Decay mode	Branching ratio	CEPC Uncertainty
$Z \rightarrow \mu e$	0.75×10^{-6}	$10^{-10} - 10^{-8}$	$Z \to \pi^\pm W^\mp$	1.5×10^{-10}	$\sim 20\%$
$Z \rightarrow \tau \mu$	12×10^{-6}	10^{-9}	$Z \to \rho^{\pm} W^{\mp}$	4.0×10^{-10}	$\sim 13\%$
$Z \rightarrow \tau \rho$	0.8×10^{-6}	10^{-9}	$Z \to K^{\pm}W^{\mp}$	1.2×10^{-11}	$\sim 70\%$
$\mathbf{Z} \rightarrow \mathbf{re}$	9.0 × 10	10	$Z \to K^{*\pm}W^{\mp}$	2.0×10^{-11}	$\sim 59\%$
$ au o \mu \gamma$	4.4×10^{-8}	2×10^{-9}	$Z \to D_s^{\pm} W^{\mp}$	6.0×10^{-10}	$\sim 75\%$
$ au ightarrow 3 \mu$	$2.1 imes 10^{-8}$	10^{-10}	$Z \to D^{\pm}W^{\mp}$	2.0×10^{-11}	$< 3 \times 10^{-10}$

Samples

- CEPC Zpole: 10¹² Z bosons ~ 3.36×10¹⁰ ττ, 6.99×10¹¹ qq
- Current samples: Truth ~ 4 × 10⁻⁴ SM; Reco ~ 4 × 10⁻⁵ SM
- No Z boson width or beam energy spread

	Channel	Generator		F	ullSim	DstDate		
	Unanner	size (GB)	yield (Million)	size (GB)	yield (Million)	size (GB)	yield (Million)	
	bb	3713	376	-	-	-	-	
mo iar	$\mathbf{c}\mathbf{c}$	2610	294	-	-	-	-	
WOLISI	uu	2419	295	-	-	-	-	
	e3e3	137	851	-	-	-	-	
	bhabha	49	33	619	1.1	19	1.1	
	e2e2	151	120	105	1.6	9	1.6	
	e3e3	25	13	355	1.6	25	1.6	
	n1n1	22	24	-	-	-	-	
	n2n2	23	25	-	-	-	-	
	n3n3	22	24	-	-	-	-	
wi_isr	nn	67	73	-	-	-	-	
	uu	365	42	5918	8.1	687	8.1	
	dd	470	55	5931	8.1	678	8.1	
	\mathbf{SS}	467	55	5731	8.1	678	8.1	
	$\mathbf{b}\mathbf{b}$	559	54	6332	8.1	775	8.1	
	cc	404	43	6057	8.1	725	8.1	
	qq	2234	253	-	-	-	-	

Table 1: CEPC91.2GeV

ISR

- Mostly to the forward region
- Energy < IGeV
- Only leading order

log10(MCPEn):MCPCosTheta

Jet multiplicity

- Jets' multiplicities high, not likely to be mixed with leptonic events
- Multiplicity < 10, need to take care

$LFV - Z \rightarrow \tau \mu$

- Main background $Z \rightarrow \tau \tau, \tau \rightarrow \mu vv$
- Current sensitivity: 1.2*10-5 (LEP) FCC-ee estimation: 10-9
- Key distribution $(P_{\mu}/P_{beam}>I)$:
 - Signal accuracy depend on the momentum resolution (δp/p ~ 10⁻³), signal window: (0.998, 1.002)
 - Background surviving Nbkg: 5*ScaleFactor ~ 3.36*10⁵
- Sensitivity estimated: 1.1*10-9

$LFV - Z \rightarrow \mu e$

- Physics background: $Z \rightarrow bhabha/\mu\mu/\tau\tau$
- Current bound: 7.5*10-7 (ATLAS)
 - FCC-ee estimation: 10-9
- Key distribution:
 - μ/e mis-id rate: by sacrificing the id efficiency, barely bhabha/μμ surviving (except for muon decay: 10⁻⁷)
 - Invariant mass: no TT surviving
- Sensitivity ~ 10⁻¹⁰

$LFV \longrightarrow \tau \rightarrow \mu(e)\gamma$

- Physics background: $Z \rightarrow \tau \tau \gamma, \tau \rightarrow \mu v v$
- Current bound: 2.7*10-8 (Babar) FCC-ee estimation: 2*10-9
- Key distribution: $M(\mu\gamma)$, $E(\mu\gamma)$
 - Signal resolution: $\sigma(m) = 26$ MeV, $\sigma(E)=850$ MeV (Ecal energy resolution \oplus Track momentum resolution \oplus Position resolution, from Mogens' paper)
 - Background surviving: I*SF ~ 25k
- Sensitivity: 10-10

$LFV \longrightarrow 3\mu$

- Main background: free
- Current bound: 2.1*10-8 (Belle) FCC-ee estimation: 10-10
- Key distribution: $M(3\mu)$, $E(3\mu)$
 - Signal resolution: track momentum resolution $\delta p/p \sim 10^{-3}$, a narrow window
 - No background surviving

Hadronic Z decays $-Z \rightarrow \pi\pi$

- Physics background: $Z \rightarrow \mu\mu$, $Z \rightarrow \tau\tau$
- Key distribution:
 - invariant mass
 - Signal resolution: track
 - Z→TT surviving: I*SF
 - mis-id rate:
 - Muon mis-id rate ~ 0
- Sensitivity: 10-10

Hadronic Z decay $- Z \rightarrow \pi^+\pi^-\pi^0$

- Main background: $Z \rightarrow \tau \tau$
- Key distribution:
 - InvM:
 - Signal resolution: $\sigma(m) \sim sub MeV$
 - Background reduced to 10-4
 - Impact parameter: reduce 10%
 - M₁₂ & M₂₃ (M>Mtau): if Dalitz plot predicted
 - bkg reduced to $10^{-7} \sim 100$ k
- Sensitivity: 10-9

20

Radiative Z decay $- Z \rightarrow J/\psi \gamma, J/\psi \rightarrow \mu + \mu$ -

- Main background: $Z \rightarrow \tau \tau \gamma$, $\mu \mu \gamma$
- Current bound: 2.6*10-6(ATLAS)
 White paper prediction: 8*10-8
- Key distribution:
 - total invariant mass:
 - I*SF $Z \rightarrow \tau \tau \gamma$ surviving
 - di-muon invariant mass:
 - $3*SF Z \rightarrow \mu\mu\gamma$ surviving
 - impact parameter:
 - reduce 10%
- Sensitivity: 10-9~10-10

Radiative Z decay $-Z \rightarrow \rho \gamma, \rho \rightarrow \pi + \pi$ -

- Main background: $Z \rightarrow \tau \tau \gamma$
- White paper prediction: 4*10-9
- Key distribution:
 - total invariant mass:
 - $10*SF Z \rightarrow \tau \tau \gamma$ surviving
 - impact parameter:
 - reduce10%
- Sensitivity: 10-9

Weak Radiative Z decay — $Z \rightarrow \pi^{+/-}W^{-/+}$ (leptonic)

- Main background: $Z \rightarrow \tau \tau$, one $\tau \rightarrow \pi v$, the other $\tau \rightarrow lvv$
- Current bound: 7.0*10⁻⁵(LEP)
 White paper prediction: 10⁻¹⁰
- Key distribution:
 - Acoplanarity, Missing E, lepton E: assuming bkg reduce rate same order as LEP
 - impact parameter: reduce 10%, ~10k bkg surviving
- Sensitivity: 10-10

Summary

Channel	Z→τμ	Z→µe	τ→μγ	τ → 3μ	Ζ→ππ	Ζ→π+π- π ⁰	Z→J/ψγ	Ζ→ργ	Z→π+/- W-/+
Current Bounds/ BR prediction	1.2*10 ⁻⁵	7.5*10 ⁻⁷	4.4*10 ⁻⁸	2.1*10-8	10 -12	10 ⁻⁸ ~10 ⁻⁵	2.6*10 ⁻⁶	10 ⁻⁹	7.5*10 ⁻⁵
Earlier Estimation	10 ⁻⁹	10 ⁻⁹	10 ⁻⁹	10 -10	-	-	10 ⁻⁸	10 ⁻⁹	10 -10
FullSim Estimation	10 ⁻⁹	10 ⁻⁹	10 -10	10 -10	10 -10	10 ⁻⁹	10 ⁻⁹ ~10 ⁻¹⁰	10 ⁻⁹	10 -10

Summary

- Intensively activities on CEPC flavor physics
 - White paper
 - Meeting
 - Analysis
- Preliminary jet charge measurement, base for specific channel studies
- FullSim result consistent with the earlier estimation
 - mostly background free, great potential of CEPC Flavor
 - requirements on detector & algorithm
 - need more theorists' interpretations

Backup