

Lithium vapour

Wakefield acceleration

Recent Progress on CEPC Plasma Injector

Ion channel

Dr. Dazhang LI from AC, IHEP on behalf of THU-IHEP AAC group

- PWFA error analysis and hosing instability
 - Flashback: tolerance studies last year
 - Shorter drive beam and lower transformer ratio
 - ✓ General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

- PWFA error analysis and hosing instability
 - Flashback: tolerance studies last year
 - Shorter drive beam and lower transformer ratio
 - General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

> 10 GeV → 45.5 GeV e- acceleration, $R\sim4$

> ne = 5×10^{15} cm⁻³, the driver is about 2 ps (600 µm, $\xi \sim 8$)

- > Hosing instability occurs at ~ 130000 ω_p^{-1} and start to lose particles at ~ 150000 ω_p^{-1}
- > Assuming fully symmetric drive and witness bunches !

Perturbation		Limitation	limiting factor
beam charge	Driver	[-1%, 0.8%]	$egin{array}{c} {\cal E}_t \ \delta_E \end{array}$
	Trailer	[-0.24%, 2%]	E_t
beam length	Driver	±1%	E_t
	Trailer	±5%	E_t
initial energy	driver	[-1%, 0.38%]	E_t
	trailer	[-1.75%, 0.37%]	E_t
beam distance		[-1um, 0.25um]	E_t
initial energy spread		3.9%	$egin{array}{c} {\cal E}_t \ {\delta}_E \end{array}$
Spot size	driver	[-40%, 2%]	E_t
	trailer	[8%, 8%]	E_t

CEPC Plasma injector Progress @ 2021

5

2021-09-22

Ja

6

Slice jitter	Transverse position	Driver	±0.025nm	metry, even let $\langle x_d \rangle = 0$, the
		Trailer	±3.7um	example, adding only 0.025nm Actually, the resolution of the d noise. Is it physical or not?
	Transverse velocity	Driver	<0.1nrad	
		Trailer	<5urad	

We did different studies and found that:

- ➢ Increase particle number → hosing improved
- > Increase the jitter (noise) to dx level or larger \rightarrow hosing became more serious
- > Partial particles asymmetry → hosing improved

 5×10^5 particles 99.99% symmetry $\sigma_z \sim 5$ lose 50% particles at 100000 w_p⁻¹

PWFA error analysis and hosing instability

- Flashback: tolerance studies last year
- Shorter drive beam and lower transformer ratio
- General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility discussion

CEPC Plasma Injector Progress @ 2021 CEPC Day

2021-09-22

PWFA error analysis and hosing instability

- Flashback: tolerance studies last year
- Shorter drive beam and lower transformer ratio
- General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

- > An important question is "How do the beams evolve from their initial statistical noise?"
- > Another question is "Does the hosing instability set any limit on the transformer ratio of PWFA?"

Initial noise of a collimated beam

- > Particle number is N, transverse profile is Gaussian with r.m.s. size σ_r → the jitter of bunch center obeys a Gaussian distribution $N(0, \sigma_r/\sqrt{N})$
- For PIC simulation, number of macro particle is much less than practical particle number, so the initial noise level is different in magnitudes.
- > For a 5.8nC driver, the particle number in QuickPIC is $128 \times 128 \times 256$, which is $1/93^2$ of the practical particle number.

CEPC Plasma Injector Progress @ 2021 CEPC Day 2021-09-22

C. Huang, W. Lu et al., PRL 99, 255001 (2007)

$$\begin{aligned} x_c &= \bar{x}_c e^{ik_\beta s} \\ &\triangleright \text{ Under this limit, } \partial_s \ll k_\beta, \partial_\xi \gg \omega_0, \\ &\quad 2ik_\beta \partial_s \bar{x}_b = k_\beta^2 \bar{x}_c \\ &\quad \partial_\xi^2 \bar{x}_c = \omega_0^2 \bar{x}_b \\ &\triangleright \text{ Let } \bar{x} = A e^{\gamma_0 (k_\beta s)^m (\omega_0 \xi)^n} \end{aligned}$$

and we have

$$\frac{\partial \xi^2}{\partial \xi^2} + \omega_0 x_c - \omega_0 x_b$$

the short pulse, long range ling

 \succ For the most basic equations

 $x_b = \bar{x}_b e^{ik_\beta s}$

 $\partial^2 x_c$

≻ With assur

$$\frac{\partial^2 x_b}{\partial s^2} + x_b = k_\beta^2 x_c$$
$$\frac{\partial^2 x_c}{\partial \xi^2} + \omega_0^2 x_c = \omega_0^2 x_b$$

> A straightforward way to calculate the asymptotic solution.

Hosing instability in bubble regime

$$\begin{array}{c}
10^{2} \\
10^{0} \\
\hline
10^{-2} \\
10^{-4} \\
10^{-6} \\
\hline
0 \\
25 \\
50 \\
75 \\
100 \\
\hline
100 \\
125 \\
100 \\
125 \\
\hline
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
100 \\
125 \\
125 \\
100 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\
125 \\$$

 $s[\sqrt{2\gamma}c/\omega_p]$

11

$$\partial_{\xi}^2 \partial_s \bar{x}_b = \frac{\omega_0^2 k_{\beta}^2}{2ik_{\beta}} \bar{x}_b$$

10²

Different separation has little effects on hosing growth. Which means bunch train may not effective for damping hosing instability

- \blacktriangleright Take the c_r , c_{ψ} into consideration
- > Other damping regime, such as the energy spread, nonlinear focusing force can be quantified by the damping of x_b

$$\geq \frac{\partial^2 x_c}{\partial \xi^2} + c_r c_{\psi} \omega_0^2 x_c = c_r c_{\psi} \omega_0^2 c_b x_b$$

The asymptotic solution agrees well with the PIC simulation result

CEPC Plasma Injector Progress @ 2021 CEPC Day

2021-09-22

- Transformer ratio R, Energy transfer efficiency 60%
- $Q_w = 1$ nC, $Q_d = 1.67$ RnC, Beam size σ_r
- Initial noise level $\sim \frac{\sigma_r}{\sqrt{N}} = \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5}$
- Drive beam length $k_p L_d \sim 2R$
- Witness beam length $k_p L_w \sim 1$
- Initial energy γ_0
- Accelerating distance $k_p s \sim \gamma_0 R$
- We can obtain the final beam centroid of the witness beam at the end of the acceleration

 $\succ x_b \sim \frac{1.27\sigma_r}{\sqrt{1+1.67R}} \times 10^{-5} \times e^{1.3\left(\frac{\gamma_0}{2}\right)^{\frac{1}{6}} c^{\frac{1}{3}} c^{\frac{1}{3}}_b R^{\frac{1}{3}} \left(\sqrt{2}R + \frac{1}{\sqrt{2}}\right)^{\frac{2}{3}}}$

For a 10GeV driver, beam size $k_p \sigma_r = 0.2$, c=0.7, $c_b = 0.8$

For a 20GeV driver, beam size $k_p \sigma_r = 0.2$, c=0.7, $c_b = 0.8$

Transformer ratio 1-1.5 is acceptable without extra damping regime

CEPC Plasma Injector Progress @ 2021 CEPC Day

CEPC Plasma Injector Progress @ 2021 CEPC Day

2021-09-22

One powerful damping method

CEPC Plasma Injector Progress @ 2021 CEPC Day

2021-09-22

- PWFA error analysis and hosing instability
 - ✓ Flashback: tolerance studies last year
 - Shorter drive beam and lower transformer ratio
 - General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

Motivation: find a matched condition

M. Tzoufras, W. Lu, et al., Phys Rev Lett101, 145002 (2008)

- $Q_s E_s = \frac{\pi R_b^4}{16}$ $R_b: \text{ the maximum radius of the ion channel}$ $Q_s E_s: \text{ the total charge of trailer}$ $E_s: \text{ the longitudinal wakefield at } \xi_s$
 - Not related to driver parameters
 - > Based on the assumption $R_b >> 1$
 - > Our goal: find proper bunch parameters of $(Q_d, Q_t, \sigma_{zd}, \sigma_{zt}, \sigma_{rd}, \sigma_{rt}, d_{dt}, n_p)$

The acceleration structure is determined by the normalized charge per unit length $\Lambda = n_b \sigma_r^2$ (not related to σ_r)

For given Λ_d , σ_{zd} , σ_{zt} , d_{dt} , we introduce BFGS (one of the most effective algorithms of quasi-Newton group) to find optimal Λ_t for smallest energy spread. Then we can get transformer ratio R directly in such condition.

- Optimization average time: 7.6min
- Scanned a wide range bunch parameters (referenced FACET-II, FLASHForward, CLIC...) Λ_d : [0.0885,7.70] σ_{zd} : [0.0952,1.90] Λ_t : [0.0627,3.14] σ_{zt} : [0.0952,0.857]

- PWFA error analysis and hosing instability
 - ✓ Flashback: tolerance studies last year
 - Shorter drive beam and lower transformer ratio
 - General analysis on hosing instability
- Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

Slides from Dr. Bo Peng (2020)

CEPC Plasma Injector Progress @ 2021 CEPC Day

2021-09-22 22

2021-09-22

23

\checkmark	Upgrade laser system, energy \sim 130mJ, pulse duration \sim 30 fs	done
✓	Installation of light path, gas loop and diagnostic system	done
\checkmark	Laser and electron beam synchronization	done

✓ Plasma dechirper experiment results, electron deceleration in plasmas ($\sim 10 \text{ MeV}$)

- PWFA error analysis and hosing instability
 - ✓ Flashback: tolerance studies last year
 - Shorter drive beam and lower transformer ratio
 - General analysis on hosing instability
- "Perfect" beam loading for a two-bunch PWFA
- Preliminary results on PWFA experiment @ SXFEL
- PWFA test facility consideration

Key requirements of the test facility:

- → High charge L-band e- gun \rightarrow > 6 nC / bunch
- \succ Longitudinal shaped bunch \rightarrow laser shaping and/or EE
- Longitudinal modulation at transport line
- ➤ Two e- bunches "perfect" merging \rightarrow Essentially solved, with ~ 1% energy difference
- ▶ e- Bunch compressor design \rightarrow optimized (2 bunches compressed in one structure)
- → FFS to achieve very small beam size → ~ $40\mu m$ @ 1 GeV/ 30 mm·mrad
- \blacktriangleright Cascaded with plasma accelerator \rightarrow need plasma matching section
- \blacktriangleright High current, low emittance e+ beam \rightarrow low energy damping/stacking ring under consideration
- > Very precise beam instrumentation and control \rightarrow better than 10 fs / 1µm

Hosing instability and error analysis

- The asymptotic solution of hosing equations agrees well with the numerical solution, and the numerical solution can agree well with the PIC simulation results.
- Without extra damping mechanism, the growth of hosing instability from statistical noise is acceptable when transformer ratio is 1-1.5
- There are other powerful damping mechanisms. HTR is still possible

Experiment at SXFEL

- Finally the experiment started. So far the beam time is still limited
- A dedicated test facility is absolutely necessary
- PWFA Test facility consideration
 - Try to optimized linac design to meet the requirement of low beam energy and high charge
 - Positron beamline and damping ring are under design
 - For worst condition, high efficiency and reasonable linac requirement could be ensured, with the transformer ration around 1.5

