

中國科學院為能物路納完備 Institute of High Energy Physics Chinese Academy of Sciences

Measurement of $B^{0}(s) \rightarrow \pi^{0}\pi^{0}$ at CEPC

Yuexin Wang, Manqi Ruan

CEPC Day, September 22, 2021

Outline

- 1. Motivation
- **2.** Separation of B^0 and B^0_s
- 3. Event selection
- 4. Dependence on b-tagging performance
- 5. Dependence on B mass resolution
- 6. Summary

Motivation

From physics aspect

- B⁰→π⁰π⁰ combined with B⁰→π⁺π⁻ and B⁺→π⁺π⁰, golden channels to determine the CKM angle: α (Φ₂)
- " $B \rightarrow \pi \pi$ puzzle", the measured branching ratio of the $B^0 \rightarrow \pi^0 \pi^0$ is significantly larger than the theoretical predictions.
- $B_{s}^{0} \rightarrow \pi^{0}\pi^{0}$, a pure annihilation process, BR ~10⁻⁷, has not been observed.
- Tera-Z at CEPC with 10¹¹ B⁰ and 10¹⁰ B⁰_s, at least 1-2 orders larger than Belle-II

Modes	DATA [1]	SCET [2]	QCDF	pQCD
$B^+ o \pi^+ \pi^0$	5.5 ± 0.4	5.20 ± 2.71	$6.00^{+3.76}_{-3.07}$	$4.27^{+1.85}_{-1.47}$
$B^0 \rightarrow \pi^+ \pi^-$	5.12 ± 0.19	5.40 ± 1.95	$8.90^{+5.55}_{-4.71}$	$7.67^{+3.27}_{-2.67}$
$B^0 \to \pi^0 \pi^0$	1.59 ± 0.26	0.84 ± 0.46	$0.30^{+0.46}_{-0.26}$	$0.24_{-0.07}^{+0.09}$
$B_s^0 \to \pi^+ \pi^-$	0.7 ± 0.1	-	$0.26^{+0.10}_{-0.09}$	$0.52^{+0.21}_{-0.18}$
$B_s^0 \to \pi^0 \pi^0$	< 210	-	$0.13^{+0.05}_{-0.05}$	$0.21^{+0.10}_{-0.09}$

Table 1: Experimental mesaurements and theoretical predictions of the branching ratios (in unit of 10^{-6}) of $B \rightarrow \pi\pi$ system. The soft collinear effective theory (SCET), QCD factorization (QCDF), and perturbative QCD (pQCD) are three common theoretical techniques to deal with the hadronic B-meson decays.

From detector aspect

Clear dependence on the detector performance

- b-tagging
- ECAL performance

A Fast Simulation Analysis

Separation of B⁰ and B⁰s

2σ separation requires B mass resolution σ_{mB} better than 30 MeV.

Dependence of B mass resolution on detector performance

- CEPC baseline single photon angular resolution ~1mrad/√E
- ECAL energy resolution dominates the contribution when $\sigma_{\theta} < 1 \text{mrad} / \sqrt{E}$
- The following analysis only takes ECAL energy resolution into account
- $\sigma_{mB} \sim 30$ MeV requires ECAL energy resolution $\sim 3\%/\sqrt{E \oplus 0.3\%}$

CEPC baseline b-tagging

Numerical values used to estimate the signal statistics at Tera-Z.

$f(b \rightarrow B^0)$	0.407 ± 0.00	7
$f(b \rightarrow B_s^0)$	0.101 ± 0.00	8
$Br(B^0 \to \pi^0 \pi^0)$	1.59×10^{-6}	
$Br(B_s^0 \to \pi^0 \pi^0)$	3×10^{-7}	SM prediction
$Br(\pi^0 \to \gamma \gamma)$	98.823%	

Cut chain table at 3%/√E⊕0.3% & CEPC baseline b-tagging

Cut chain	$B^0 o \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	$q\bar{q}$	$u\bar{u}+d\bar{d}+s\bar{s}$	cē	$b\bar{b}$	$\sqrt{S + B}/S$
Total generated	101113	80/8	7e11	4.285e11	1.203e11	1.512e11	
Total generated	191115	0940	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152800	7158	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	132890	/158	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\pi^0 o \gamma\gamma$	147932	6959	134272699126	3605151069	9908563142	120758984915	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92172	4396	15490570779	843830534	1598643569	13048096676	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87057	4148	2534286670	307734259	314762436	1911789975	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86807	4133	2233308564	289771547	281656846	1661880170	
$\theta_{\pi^0\pi^0} < 23^{\circ}$	77626	3644	825367542	119076559	102055313	604235671	
$m_{\pi^0\pi^0} \in (5.2188, 5.3405) \text{ GeV}$	75274	717	17906	5640	1656	10600	0.4067%
$(2.0 \sigma_{m_{R0}} = 2.0 \times 0.0304 \text{GeV})$	75574	/1/	1/890	3040	1030	10000	$\pm\ 0.0106\%$
$m_{\pi^0\pi^0} \in (5.3421, 5.3917) \text{ GeV}$			5 (.	2 100			4.5070%
$(0.8 \sigma_{m_{B^0}} = 0.8 \times 0.0310 \text{GeV})$	3769	2394	5477	2400	507	2570	$\pm 0.5563\%$

(a) Energy spectrum of π^0 pairs in $B^0 \to \pi^0 \pi^0$ (left), $B_s^0 \to \pi^0 \pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

(b) $\theta_{\pi^0\pi^0}$ vs $E_{\pi^0\pi^0}$ in $B^0 \to \pi^0\pi^0$ (left), $B^0_s \to \pi^0\pi^0$ (middle), and $Z \to q\bar{q}$ (right) events.

Cut chain	$B^0 o \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	q ar q	$u\bar{u}+d\bar{d}+s\bar{s}$	cē	$b\bar{b}$	$\sqrt{S + B}/S$
Total generated	101113	80/8	7e11	4.285e11	1.203e11	1.512e11	
Total generated	191115	0740	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
b-tagging	152800	7159	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	152890	/156	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
$\pi^0 o \gamma\gamma$	147932	6959	134272699126	3605151069	9908563142	120758984915	
Lower $E_{\pi^0} > 6 \text{ GeV}$	92172	4396	15490570779	843830534	1598643569	13048096676	
Higher $E_{\pi^0} > 14 \text{ GeV}$	87057	4148	2534286670	307734259	314762436	1911789975	
$E_{\pi^0\pi^0} > 22 \text{ GeV}$	86807	4133	2233308564	289771547	281656846	1661880170	
$\theta_{\pi^0 \pi^0} < 23^{\circ}$	77626	3644	825367542	119076559	102055313	604235671	
$m_{\pi^0\pi^0} \in (5.2188, 5.3405) \text{ GeV}$	75274	717	17906	5640	1656	10600	0.4067%
$(2.0 \sigma_{m_{p0}} = 2.0 \times 0.0304 \text{GeV})$	15514	/1/	17890	3040	1030	10000	$\pm\ 0.0106\%$
$m_{\pi^0\pi^0} \in (5.3421, 5.3917)$ GeV							4.5070%
$(0.8 \sigma_{m_{B^0}} = 0.8 \times 0.0310 \text{GeV})$	3769	2394	5477 7	2400	507	2570	$\pm 0.5563\%$

	Cut chain	$B^0 \to \pi^0 \pi^0$	$B_s^0 \rightarrow \pi^0 \pi^0$	$q\bar{q}$	$u\bar{u}+d\bar{d}+s\bar{s}$	$c\bar{c}$	$b\bar{b}$	$\sqrt{S + B}/S$
	Total generated	101112	8048	7e11	4.285e11	1.203e11	1.512e11	
	Total generated	191115	0940	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
	b-tagging	152800	7158	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
	$(\epsilon_{b,c,uds \to b} = 80\%, 8.26\%, 0.85\%)$	152890	/156	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
	$\pi^0 o \gamma\gamma$	147932	6959	134272699126	3605151069	9908563142	120758984915	
	Lower $E_{\pi^0} > 6 \text{ GeV}$	92172	4396	15490570779	843830534	1598643569	13048096676	
	Higher $E_{\pi^0} > 14 \text{ GeV}$	87057	4148	2534286670	307734259	314762436	1911789975	
	$E_{\pi^0 \pi^0} > 22 \text{ GeV}$	86807	4133	2233308564	289771547	281656846	1661880170	
	$\theta_{\pi^0\pi^0} < 23^{\circ}$	77626	3644	825367542	119076559	102055313	604235671	
Optimized	$m_{\pi^0\pi^0} \in (5.2188, 5.3405) \text{ GeV}$	75374	717	17896	5640	1656	10600	0.4067%
	$(2.0 \sigma_{m_{B^0}} = 2.0 \times 0.0304 \text{GeV})$	15514	/1/	17890	5040	1050	10000	$\pm 0.0106\%$
mass	$m_{\pi^0\pi^0} \in (5.3421, 5.3917) \text{ GeV}$	27(0	2204	5 4 7 7	2400	507	2570	4.5070%
window	$(0.8 \sigma_{m_{B_s^0}} = 0.8 \times 0.0310 \text{GeV})$	3769	2394	54/7 8	2400	507	2570	$\pm\ 0.5563\%$

Background components

Dependence on b-tagging performance

Three b-tagging conditions, at 3%/√E⊕0.3%

Accuracy

			$B^0 \rightarrow \pi^c$	ΰπο					
b-tagging	Mass window (GeV)	n σ_{m_B}	$B^0 \rightarrow \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	$q\bar{q}$	$u\bar{u}+d\bar{d}+s\bar{s}$	$c\bar{c}$	$b\bar{b}$	$\sqrt{S + B}/S$
No b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 100\%, 100\%, 100\%)$	(5.2370, 5.3222)	1.4	85986	311	517718	494139	15549	8030	0.9038% ± 0.0308%
CEPC baseline b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 80\%, 8.26\%, 0.85\%)$	(5.2188, 5.3405)	2.0	75374	717	17896	5640	1656	10600	0.4067% ± 0.0106%
Ideal b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 100\%, 0\%, 0\%)$	(5.2188, 5.3405)	2.0	94217	896	13250	0	0	13250	0.3494% ± 0.0047%
			$Bs \rightarrow \pi^{o}$	°π°					
b-tagging	Mass window (GeV)	$n \sigma_{m_B}$	$B^0 \rightarrow \pi^0 \pi^0$	$B_s^0 \to \pi^0 \pi^0$	$q\bar{q}$	$u\bar{u}+d\bar{d}+s\bar{s}$	cī	$b\bar{b}$	$\sqrt{S + B}/S$
No b-tagging ($\epsilon_{b,c,uds \to b} = 100\%, 100\%, 100\%$)	(5.3328, 5.4010)	1.1	8563	3613	353469	338838	9411	5220	16.7354% ± 0.7580%
CEPC baseline b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 80\%, 8.26\%, 0.85\%)$	(5.3421, 5.3917)	0.8	3769	2394	5477	2400	507	2570	4.5070% ± 0.5563%
Ideal b-tagging $(\epsilon_{b,c,uds \rightarrow b} = 100\%, 0\%, 0\%)$	(5.3421, 5.3917)	0.8	4712	2992	3212	0	0	3212	3.4917% ± 0.1953%

Dependence on b-tagging performance

b-tagging is essential to reduce the hard combinatorial background in non-bb events

 π^0 s in light-quark events (mainly from hadronization) are harder than those in cc and bb events (mainly from c and b hadrons)

Figure 5: Decay generation number of π^0 vs E_{π^0} in $Z \to u\bar{u}, Z \to d\bar{d}, Z \to s\bar{s}, Z \to c\bar{c}, Z \to b\bar{b}$ events.

Dependence on B mass resolution

with CEPC baseline b-tagging

12

Dependence on B mass resolution

with CEPC baseline b-tagging

Figure 13: Accuracy of $B^0 \to \pi^0 \pi^0$ (left) and $B_s^0 \to \pi^0 \pi^0$ (right) vs σ_{m_B} (GeV).

• CEPC baseline ECAL energy resolution ~17%/√E⊕1%

Summary

 $B^{0}(s) \rightarrow \pi^{0}\pi^{0}$ are important to understand

- $B^0 \rightarrow \pi^0 \pi^0$: CKM angle α and $B \rightarrow \pi \pi$ puzzle
- $B_{s}^{0} \rightarrow \pi^{0}\pi^{0}$: annihilation mechanism

Fast Simulation is used to study the dependence of $B^{0}{}_{(s)} \rightarrow \pi^{0}\pi^{0}$ accuracy on

b-tagging:

essential to reduce the hard combinatorial background in non-bb events

Accuracy at 3%/√E⊕1%	$B^0 \rightarrow \pi^0 \pi^0$	$B_{s}^{0} \rightarrow \pi_{0}^{0} \pi_{0}^{0}$	
No b-tagging	0.9%	16.7%	2~3 times
CEPC baseline b-tagging	0.4%	4.5%	improvement

- B mass resolution (σ_{mB}):
 - 2σ separation of B0 and Bs requires σ_{mB} better than 30 MeV (~3%/ $\sqrt{E \oplus 0.3\%}$).

Accuracy with CEPC baseline b-tagging	$B^0 \rightarrow \pi^0 \pi^0$	$B_{s}^{0} \rightarrow \pi_{0}^{0} \pi_{0}^{0}$	
17%/√E⊕1% (CEPC baseline)	~1.2%	~21%	3~5 times
3%/√E⊕0.3% (σ _{mB} ~30 MeV)	~0.4%	~4%	

Weed to further understand and estimate the corresponding improvement on the CKM-α measurement...

Backup

CKM Quark-Mixing Matrix

12.3 Phases of CKM elements

As can be seen from Fig. 12.1, the angles of the unitarity triangle are

$$\beta = \phi_1 = \arg\left(-\frac{V_{cd}V_{cb}^*}{V_{td}V_{tb}^*}\right),$$

$$\alpha = \phi_2 = \arg\left(-\frac{V_{td}V_{tb}^*}{V_{ud}V_{ub}^*}\right),$$

$$\gamma = \phi_3 = \arg\left(-\frac{V_{ud}V_{ub}^*}{V_{cd}V_{cb}^*}\right).$$
(12.16)

Since CP violation involves phases of CKM elements, many measurements of CP-violating observables can be used to constrain these angles and the $\bar{\rho}, \bar{\eta}$ parameters.

Figure 12.1: Sketch of the unitarity triangle.

Single photon angular resolution

CEPC baseline full simulation results by Yuzhi

Efficiency induced by di-photon merging

Figure 2: (a) Distribution of the minimum opening angle among 4 photons from $B_{(s)}^0 \to \pi^0 \pi^0$. (b) Percentage of $B_{(s)}^0 \to \pi^0 \pi^0$ signal events with minimum $\theta_{\gamma\gamma}$ over different $\theta_{\gamma\gamma}$ thresholds.

For radius = 1800 mm: 8 mrad ~ 14.4 mm separation distance, 100% efficiency. 11 mrad ~ 20 mm, ~10% efficiency lost, accuracy is degraded by 10% at most.

$\rightarrow \pi^0 \pi^0$ 8948	<i>q</i> q 7e11	$u\bar{u}+d\bar{d}+s\bar{s}$	cē	$b\bar{b}$	$\sqrt{S + B}/S$
8948	7e11	4 395-11	1 2 2 2 1 1		
0240		4.285611	1.203e11	1.512e11	
	(100.00%)	(61.21%)	(17.19%)	(21.60%)	
7158	1.34539e11	3.64225e9	9.93678e9	1.2096e11	
/156	(100.00%)	(2.70%)	(7.38%)	(89.92%)	
6959	134272699126	3605151069	9908563142	120758984915	
4396	15490570779	843830534	1598643569	13048096676	
4148	2534286670	307734259	314762436	1911789975	
4133	2233308564	289771547	281656846	1661880170	
3644	825367542	119076559	102055313	604235671	
717	17806	5640	1656	10600	0.4067%
/1/	17890	3040	1050	10000	$\pm 0.0106\%$
	5 4 5 5		505	2570	4.5070%
2394	5477	2400	507	2570	$\pm 0.5563\%$
	7158 6959 4396 4148 4133 3644 717 2394	7158 1.34539e11 (100.00%) 6959 134272699126 4396 15490570779 4148 2534286670 4133 2233308564 3644 825367542 717 17896 2394 5477	$\begin{array}{ccccccc} & (100.00\%) & (01.21\%) \\ \hline 1.34539e11 & 3.64225e9 \\ (100.00\%) & (2.70\%) \\ \hline 6959 & 134272699126 & 3605151069 \\ \hline 4396 & 15490570779 & 843830534 \\ \hline 4148 & 2534286670 & 307734259 \\ \hline 4133 & 2233308564 & 289771547 \\ \hline 3644 & 825367542 & 119076559 \\ \hline 717 & 17896 & 5640 \\ \hline 2394 & 5477 & 2400 \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Leading kaon in B meson hemisphere

Results at a benchmark detector setup

A benchmark detector setup for $B_{(s)} \rightarrow \pi^0 \pi^0$ measurement

https://iopscience.iop.org/article/10.1088/1748-0221/8/09/P09009

Separation of B⁰ and Bs

$m_{B^0} = 5279.63 \pm 0.15 MeV$

 $m_{B_s^0} = 5366.89 \pm 0.19 MeV$

A 2σ separation requires ECAL energy resolution better than 3%/√E⊕0.3%

Kinematic Fit

at 3%/√E⊕1% ECAL resolution

Signal peak gets sharpened after Kinematic Fit

Figure 14: Separation power (overlapping area) at different ECAL resolutions wo/wi kinematic fit.