
Ladder Mechanics Studies for the CECP Vertex Prototype

Jinyu Fu

2021-9-22

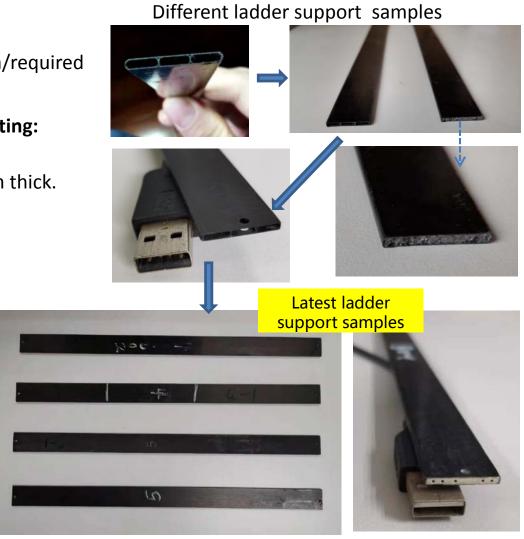
Ladder and its support structure

Driven by the material budget requirement of 0.15% radiation length of one sensitive layer of the silicon vertex detector, the ladder support structure mainly made of carbon fiber composites were designed and have been prototyped.

Ladder support prototype

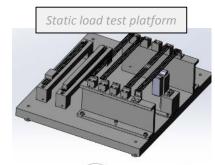
• Manufacture process validation: short beam - trial materials - full length/required material.

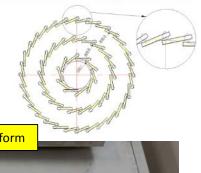
Ladder support prototypes for testing:

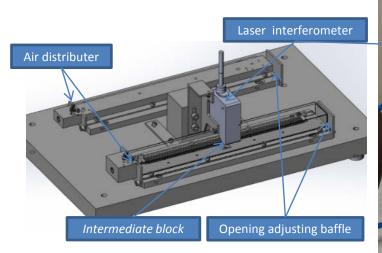

Full size: 16.8 \times 2 \times 273 mm. High modulus CFRP, 120 - 150 μ m thick.

4 pieces as listed below:

Ladder support	Thickness (μm)	Weight (g)	
4-1	120	2.83/(2.5)	
4-2	120	3.23/(2.5)	
5-1	150	2.83/(3.0)	
5-2	150	3.26/(3.0)	

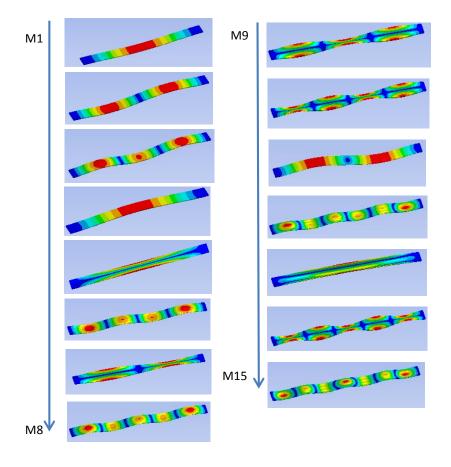

Vibration Test and Purpose:


To verify the stiffness of the ladder support, amplitude induced by air cooling should be less than spatial resolution of the CEPC VTX requirement.



Test platforms of ladder/ladder-support

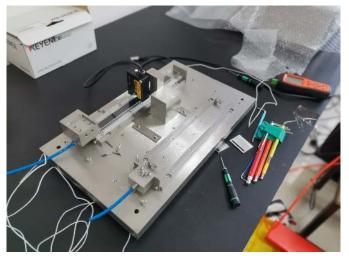
- Static (different support and load cases)
- Vibration and cooling + pressed air (different cases)
 - Two air channels with different section sizes.
 - Ladder ladder horizontally fixed in channel by two L shaped blocks.
 - Gaps within small/big channel in top and bottom sides of the ladder support is 3 mm/9 mm.
 - One laser interferometer non contact measurement


Modal analysis of ladder support

Natural frequency of the ladder support and ladder

(two ends fixed)

mode	Ladder support Freq.(Hz)	Ladder Freq.(Hz)		
1	309. 98	234. 54		
2	<u>837. 48</u>	<u>629. 48</u>		
3	1593. 7	1188. 4		
4	1793. 2	1252. 3		
<u>5</u>	<u>2238</u>	<u>1753. 6</u>		
6	<u>2532. 3</u>	<u> 1866. 7</u>		
7	<u>3351. 8</u>	<i>2624. 5</i>		
8	<u>3603</u>	<u> 2678. 9</u>		
9	<u>4000. 6</u>	<u>3166. 9</u>		
10	<u>4624. 7</u>	<u>3336. 2</u>		
11	<u>4743. 6</u>	<u>3446. 2</u>		
12	<u>4753. 3</u>	<u>3591. 6</u>		
13	5180. 3	<u>4095. 7</u>		
14	<u>5366. 8</u>	4261. 1		
15	5946.5	<u>4719. 6</u>		


Mode shapes of ladder support

Test of the ladder support prototype

- updated pressure and flow control devices
 - -digital flow meter
 - -air filter and pressure reducing valve
- temperature monitor (thermal couple)

Preliminary results of the vibration test

1-Ladder support in the small channel.

- The measuring point set to the center of the top surface of ladder support
- Air speed of 2.5 m/s is the predicted speed that can cool the ladder with sensor power dissipation of 50 mW/cm² lower than 30 Celsius degree.
- Sampling interval 1ms

Vibration test results (μm)-will be updated

Flow	Outlet	4-1	4-2	5-1	5-2
60.5 SLM (\sim 5m/s) With pins	open	0.4	0.3	0.2	0.3
	20% open	0.4	0.3	0.2	0.3
60.5 SLM (\sim 5m/s) Without pins	open	0.6	0.5	0.7	0.5
	20% open	0.6	1.4	0.5	0.5
30.25 SLM (\sim 2.5m/s) Without pins	open	-	0.1	-	-
	20% open	-	0.2	-	-

The listed values are the **peak to peak** values very roughly picked from the measured curves. The results is being further processed. The Max vibration amplitude (very conservatively) is less than **half** of the listed value. All of which are less than the CEPC VTX spatial resolution of 3 µm.

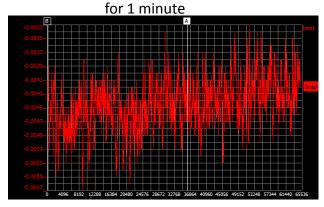
Preliminary results of the vibration test

2-Ladder support in the big channel.

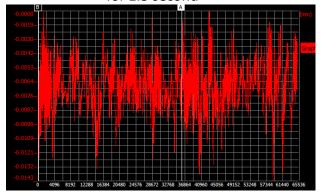
- the measuring point set to the center of the top surface of ladder support
- Air speed of 2 m/s is the predicted speed that can cool the ladder with sensor power dissipation of 50 mW/cm² lower than 30 Celsius degree.
- Different sampling intervals

Vibration test results (µm)- will be updated

Flow	Outlet	4-1 (20us/100us)	4-2 (20us)	5-1 (20us)	5-2 (20us)
V1=85 SLM (∼2 m/s)	open	3.2/2.5	2.5	4.5	3.7
	20% open	4/ 2.3	2.3	2.5	3.9
V2=128 SLM (∼3 m/s)	open	8/4.7	7.9	11	7
	20% open	12.7/4.7	9	9	8
V3=171 SLM (∼4 m/s)	open	-/ 6.5	11	10	8.9
	20% open	15.6/6.3	11.4	13.5	10

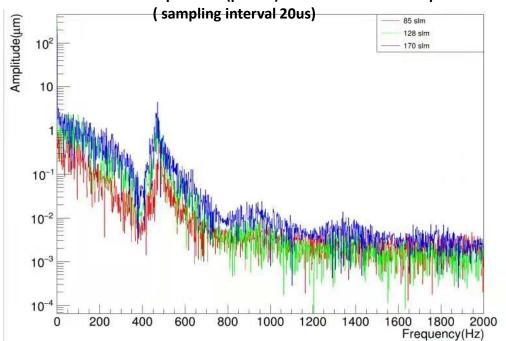

The listed values are the **peak to peak** values very roughly picked from the measured curves. The results is being further processed. The Max vibration amplitude (very conservatively) is less than **half** of the listed value, which of the top two rows are less than the spatial resolution of $3 \mu m$ of the CEPC VTX.

Data processing and analysis


The laser interferometer

- Sampling interval ranges 1ms -20 μs
- The Max number of samples 65000

The sampling interval is 1 ms (1k Hz)


The sampling interval is 20 μ s (50k Hz) for 1.3 second

2. The data is being processed:

- FFT to get the vibration spectrum (sample as below)
- statistic analysis of the amplitude (Gaussian distribution)

Vibration spectrum (partial) of ladder 4-1 -outlet open

A few resonant peaks were confirmed at frequencies below 2000 Hz.

Summary

- Preliminary test was done and results were obtained.
- 120 um thick CFRP ladder support verified to be feasible according to the preliminary results of current stage.
- Further analysis of the results is being processed.
- Enlightenment from the preliminary results analysis:
 - Adjust the sampling frequency and test the small channel again.
 - Add extended data storage hardware and prolong the continuous sampling time with high-frequency.

NEXT

- Continue testing the ladder support prototypes
 - -testing of other setup (of the test platform).
 - -with multiple measuring point (adder laser interferometer/change location)
- Vibration test of dummy
- Cooling test of dummy ladder