Status and problems in tracker optimization

G. Li Sep. 9th, 2021

PID tracker

✓ The tracker must meet the requirements of

D EW precision physics : jet energy resolution, tagging, ...

□ Flavor study: narrow resonances

✓ To achieve the best performances for both PID & tracking

Tracker volume, # of layers, layout, and so on

✓ To optimize tracker according to *p* and *impact parameter* measurement

□ Spatial resolution

□ Multiple scattering

□ Layout of tracker layers

Tracks and spatial spread due to MS

Momentum distributions @ 240 & 91 GeV

Tracking system

From Xin's Yangzhou talk, starting point

Sub detector	N layers	Resolust	Material budget (%X ₀)	
		r-ф	Z	
VXD	6	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15 per layer
SIT	4	7.2	86.6	0.65 per layer
DC (cell 1x1cm ²)	100	100	2000	1.2
SET	1	7.2	86.6	0.65
Total	111			5.35

- VXD keeps unchanged
- 4 SITs
- δR of the DC =1 m
- 1 SET

Optimize SIT layout

- Layers at 78 and 800mm fixed
- Only two layer can move
- Better resolution if layers approach beamline

Optimize # of DC layers

- Xin=0.2%X₀, Xout=1%X₀
- > Xgas=0.0034% X_0 averaged by # of layers
- 80-120 layers: changes within 5%
- 5 GeV tracks more sensitive: more or less hits matter

□ 3 SITs and 2 SETs

- > 1 layer SIT moved outside DC improve momentum resolution
- > 5-10% improvement

D Position of DC for 3 SITs & 2SETs, δR fixed to 1000 mm

- DC as far as possible from beamline
- Overall improvement, especially for 10-40 GeV

□ thickness (# of layers) or inner radius of DC

- Changes of the inner radius of DC (Thickness of DC)
- > The X of gas taken into account, 1 cm cell (depends on δR)
- Favors smaller inner radius if X taken into account, b is the dominant term for momentum measurement

Some conclusion

- Some preliminary conclusions
 - SIT layers favor to be near to beamline except the two fixed layers
 - 3 SITs + 2 SETs gets better p resolution
 - DC tends to be far from beamline if δR fixed
 - DC favors lager δR , i.e, more layers within 4SITs+1SET scheme

Updates of DC parameters from Mingyi

	L of wires(mm)					
R (mm)	$(\cos\theta=0.83)$	cell size(mm ²)	# of layers	# of Cells	T _s (10 ³ kg)	T _⊑ (10 ³ kg)
1800	5356.8	10v10	100	91 692	14.9	47.4
1750	5208.0	TOXIO	100	01 002	14.0	47.4
1700	5059.2	15x15	67	36 303	6.6	21.1
100	4764.6	10,10	FC	25.210	1.0	14.0
1600	4761.6	18X18	50	25 210	4.6	14.6
1500	4464.0	20x20	50	20 420	3.7	11.8
800	2380.8					

R extension	800-1800 mm			
Inner wall	0.2 mm (X/X0=0.00104)			
Outer wall	2.6 mm (X/X0=0.01346) (averaged results)			
Diameter of field wire	50µm (Gold-plated Aluminum) (X/X0=0.0036 for 10x10 cell)			
Diameter of signal wire	20μm (Gold-plated Tungsten) (X/X0=0.0026 for 10x10 cell)			
Square cell (F:S = 3:1)	BESIII-Like MDC			
Cell size	10, 15, 18, 20 mm			
Longest wire (cosθ=0.83)	5357mm			
Gas: He/iC4H10	He/iC4H10=80:20			

0.000116 / each layer vs. 0.000054 for 10x10 cell
0.000123 / each layer vs. 0.000081 for 15x15 cell
0.000139 / each layer vs. 0.000108 for 20x20 cell