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Introduction:

* In general, thermodynamics is treated in flat spacetime since the curvature effects are
mostly not relevant even for astrophysical objects.

- But of course there are systems that the curvature could be important, namely compact
objects; black holes, neutron stars, possible exotic objects (2-2-holes), etc.

- Black hole thermodynamics has been heavily studied. But, due the event horizon, it is
different than a self-gravitating system.

« We set out to investigate the curvature effects in thermodynamics and statistical mechanics.

+ As a case study, we consider classical ideal gas. massless and massive, in canonical and
microcanonical ensembles.



“First” things first:

e Zeroth law 1n flat spacetime: a system in thermal equilibrium <— constant T

* In curved spacetime; this is obviously still true locally, for small volume element. But once the
curvature effects are important, this no longer holds: thermal equilibrium <<«> constant T

e The system configures itself under gravity. Establishes distribution. Position dependent state
parameters p(r), p(r), T(r)..

e Gravity yields scaling relations. The temperature scaling is “universal” for any gravitational system;
known as the (generalized) Tolman’s law. 5 5
ds” = gdxdx

Tolman’s law: — Commonly known version, originally derived for
blackbody radiation; photon gas with y=0. (The generalized
T(T) \/900 (T) = constant Y P s H version; next slide)
=T [1] R. C. Tolman, Phys. Rev. 35, 904 (1930).
— X [2] R. C. Tolman and P. Ehrenfest, Phys. Rev. 36, 1791
(1930).




Generalized Tolman’s law

The general metric for a static, spherically symmetric spacetime is given as

ds* = —B(r) dt* + A(r) dr* + r*d6* + r*sin* 0d ¢* .

Energy-momentum tensor

T = (p+ p)uu” — pg*”.

We start with the energy conservation law w, 7% = 0, which yields

/

/
_:0
p+(p+p)2B ,

where (') denotes derivative with respect to r and the semi-colon is the covariant derivative.

 Use the the thermodynamical relation § = (p+p)/(nT) — u/T



Generalized Tolman’s law:

Generalized Tolman’s law: Recently noticed by Lima et. al,
Phys.Rev.D 100 (2019) 10, 104042, arXiv:1911.09060
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The common version T(T)\/B_(ir) =

for y=0 or u/T=constant

(The latter is a good
approximation in our case)

Or, additionally we have ,U(T) \/ B(’r) = Uoo




Scaling relation for particle energy:

Ei;(r)\/B(r) = E; » for partticle i

e Expected since we have T'(r)/B(r) =T, and FE ocT for thermal gas.

* Also through the definition of conserved energy E; .o = £¥p; .,

where ¢* = (1,0) is the Killing vector of the static spacetime and p* is the four-momentum

Hence, £; o = goop? = V/goo E; ()

Recall the commonly used definition of internal energy of the gas:

= /p\/EdV



Local-global correspondence:

In the canonical ensemble, the partition function is given as

Z(B) = dv | e PVP ™ @Bp

where dV = VA d®r in the curved spacetime. Seeing the local-global correspondence is more
explicit in the zero-mass case. For m = 0, we have

Z(B) = % / VA d*r / e PPE2dE . locally treated

Use the scaling relations:

B ) / \/ B3 d’r / Sl 0% cal its global dual

Provided that the thermodynamical volume element (for m = 0) is defined as

A(r)
B(r)®

the problem reduces the flat spacetime thermodynamics with this volume, which encodes all the
curvature effects.

d%th - d3




Local dynamics; general

dU = —pdV +TdS + pdN

dp = mdn + nTds J

n

where n is the number density and s is the entropy per particle
05 1 05 (p+p)
=] — and — ] =—
dp). nT on/ n2T

§=(p+p)/nT —p/T.

Different thermodynamical potential based on the characteristics of the system;
Helmholtz free energy, Gibbs free energy, etc.

f=p—nsT g=p+p—nsT



Massless ideal gas — local picture (1)

Choose the ensemble; begin with local parameters, determine the partition function, find the
equation(s) of state.

Canonical ensemble:

A “roms
Z2(8) = (27:;3 / e AVPHmE g3y, AV = AN/n

I AN 1
Z(P) = P at) B’

Partition for AN particle:

ZAN(B) = ZAAE?)




Massless ideal gas — local picture

Entropy per particle:

o (1282 Y mizand = (] 2] 44)

Total energy within the small volume AV

L 3anAN e
€ — ( 98 )n = p=3nT

Energy density

Pressure:
p=—nT (@) — ik
onjl.
p = 3p
v
3N
g ¢ Vin T3,

A cross check: Noting that n = e B / 72 , the parameters above satisty the Gibbs relation

\

5= (p+p)/nT—p/T

y

\

d>p J _
NH = — f<pt  particle four-vector
p

fJ _ 1 6(M—ana)/T Maxwell-Jiittner

(27‘(‘) 3 distr.

n=N"U,




Massless ideal gas;

From the local parameters to the global ones ds* = —B(r) di® + A(r) dr® + *d6? + r*sin® 0d¢”

e Let’s start with total particle number:

/ndV: Z—Z/TS(T)\/M d>r

a 3
:e TOO/ A(T) d3,r
7 B3(r)

Recall our
(2% %h

thermodynamic volume

Recall that — Hoo = o — constant
T

NI=

N

and T (r)v/B(r)=T,  Tolman’s law

I via Tolman’s law

n = 6'“/TT3/7T2 —> n(T)Bg/Q (7“) — Nco Scaling rule for the
number density

N = noo‘/th
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Massless ideal gas;
From the local parameters to the global ones, cont.

Energy:
U = / (\/B(fr) p(?“)) VA d®r = 3NT,,
_ o7t _ 3N
p=0 ¢ VinTs,
U = pooVin p(?‘)BQ(T) — Poo
Entropy:
Vin T
S = dV =N (441 =
frav=n(aem[Ta)
S = NS (entropy density) \'/e_,Jm/Too

12

Pressure:
NTw Poo
00 p— p— nOOTOO - —
b Vin 3

p(T)BZ(T) — Poo

e So, the system globally mimics
a homogeneous thermodynamic system.

The Gibbs’s relation
U=T,5—TN+ tisocN
N4
Poo Vvth



Massless ideal gas: global picture

e Recall the partition function in the global case
Vin

Pr [ eP=P=EXdE,  Z(B) = —
Z=sa [V [ Peo) = 23

Then, using The Helmholtz free energy, F' = —_'In Zy, we obtain

OF T3V,
5= 2 (5) N T

0 BooF° )
( T v
. ( OF ) N
e Vin)s.n Ven 4
The first law:

AU = TsodS — pocdVip + p1ecdN
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Microcanonical ensemble:

e So far we have focused on canonical ensemble. How about microcanonical ensemble?

The number of microstates for N indistinguishable particles can be estimated as, as

where h® denotes our coarse-graining as the volume of a single cell, 1/N! is the estimation tactor
for not overcounting indistinguishable particles, and Vps = [ dV (@) dV ®) is the total phase space

volume

e Local picture

4 3\ AN
AQ:(G p)

2712 n4

s(r)AV =1n AQ(r) v

e Global picture

Vin 1o
=1n)=\(4+1 >

G
oU Vth,N‘ U

(@50).0 = %
8‘/th UN ‘/th

Agrees with the canonical ensemble. Expected but not trivial in the curved spacetime.

|5 &

14



Massive 1deal gas:

* So far we have considered the simple case of massless ideal gas. Things get a little complicated in the
massive case but still remarkably self-consistent.

* Local picture

K, (b))
A Y =nT{34+0b
Z(B) = (27:;3/6—3\/p +m? g3, p =n ( Ky (b)
_ (?‘;3 <47Tm3 bi(b)> b=m/T ) T
a4 » — al — T*Ky(m/T)
272
3 p2 -
- el §=(p+p)/nT —p/T.
Kz(b) m2n 2
\/e_N/T J
e Global picture
. Difficulty in finding the
Z(B) = T )3/ A(r) d3r/e_5\’ B dp pressure via
m
e ( OF ) ?
- (5 -~ ).
- agrees with the local case Not clear how to identify the
g ; ( OF ) thermodynamic volume
0
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Thermodynamic volume for the massive case: not straightforward

e Easy in the massless case

3 —Boo Eoo 72
2= L [ &b [ emsenias,

Curvature and the energy parts can be seperated

* Does not seem possible for the massive case

av

Z(B) = e L adp — i ()

1 A
~ 272433 / g V B3 b Ka(b)

Curvature and energy are tangled.

* Yet we can still isolate dVy from the first law of thermodynamics.

. (8F)
5. | A = =\ gl
AV, = b K2 (/d b Ko (b ) th / Boo,N ‘/

"M 12 Ky () Too)

OO7 e m
272
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Outlook and Conclusion:

- We have initiated a study of the curvature effects in thermodynamics and statistical
mechanics.

- We have so far considered the massless and massive classical ideal gas both in
canonical and microcanonical ensembles.

* There exists a thermodynamic dual picture globally in the curved spacetime.

 The global characteristics of the system mimics the flat spacetime thermodynamics with
the identification of thermodynamic volume, which is different than the geometric volume.

- The curvature effects in the global thermodynamics is encoded in this thermodynamical
volume.

* Next, 2-2-holes, neutron stars, quantum gas, grand canonical ensemble.

17



Additional Slides



Modified Bessel functions:

K,(2) = f dr(r? - z2)"""/2 exp(—1)

(2n)'

which, via partial integration, could also be given as

2" (n — 1)!

K(2) = =5, =%

1 _
z"f dr(r? — z?) 3/2, exp(—17)

Z
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