

中國科學院為能物路納完施 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

CEPC Flavor Physics White Paper, September 15, 2021

Outline

- Introduction
- Samples
- Method
- Results
 - Study of $e^+e^- \rightarrow Z \rightarrow b\bar{b}$ event
 - Study of $e^+e^- \rightarrow Z \rightarrow c\bar{c}$ event
- Conclusion

Introduction

Introduction of Jet Charge

We already have flavor tagging algorithm, Jet Charge can help find more physics

What is Jet Charge?

• To determine initial jet charge, namely b quark v.s. \bar{b} quark / c quark v.s. \bar{c} quark

Application of Jet Charge:

- The precision of A_{FB} (Forward and Backward Asymmetry) and $\sin^2 \theta_W$ (electroweak mixing angle) measurement
- The precision of CP Violation measurement

• ,

Jet Charge at CEPC

High productivity

Why CEPC?

- 3 x 10¹¹ 10¹² Z bosons in 2 years
- $b\bar{b}$ branching fraction: 15.2%
- 0.152 × 10¹¹ 10¹² $b\bar{b}$

Good detector system

- Good VTX reconstruction
- Good PID system

Clean environment

Different particle flavors

- $\sin^2 \theta_W^b$
- $\sin^2 \theta_W^c$

Particle Tera-Z Belle II LHCb b hadrons B^+ 6×10^{10} $3 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ 3×10^{13} $3 \times 10^{10} (50 \, \text{ab}^{-1} \text{ on } \Upsilon(4S))$ 6×10^{10} 3×10^{13} B^0 2×10^{10} 3×10^8 (5 ab⁻¹ on $\Upsilon(5S)$) 8×10^{12} B_s 1×10^{10} 1×10^{13} b baryons 1×10^{10} 1×10^{13} Λ_{b} c hadrons D^0 2×10^{11} 6×10^{10} D^+ D_s^+ 3×10^{10} Λ_c^+ 2×10^{10} 3×10^{10} $5 \times 10^{10} (50 \text{ ab}^{-1} \text{ on } \Upsilon(4S))$ τ^+ From CEPC CDR 2018

Flavor production at different experiments

Jet Charge Algorithm

Jet Charge Algorithm at Truth Level:

Input:

- Information of final leading particles:
 - Charge
 - ► Energy
 - Momentum
 - ٠...

Output:

- Jet charge
- Description of Jet Charge
 - Misjudgment rate ω
 - Effective tagging power

Samples

Samples

Samples:

- WHIZARD195
- CEPC Z pole (91.2 GeV) at Truth level
- 16 million $Z \rightarrow b\bar{b}$ events:
 - easy to select
 - high sensitivity for $A_{FB}(\sin^2 \theta_W)$ v.s. energy
- 16 million $Z \rightarrow c\bar{c}$ events:
 - simpler decay behavior

Final particles we consider:

- *leptons:* e^+e^- , $\mu^+\mu^-$
- *Kaons: K*⁺*K*⁻
- pions: $\pi^+\pi^-$
- protons: p^+p^-

e+

Method

How to develop Jet Charge?

Jet Charge Algorithm:

- Use Jet Clustering to divide final leading particles into two jets
- Find the relationship between observables(charge, energy) of final leading particles and jet charge:
 - For $Z \rightarrow b\bar{b}$ samples:

-
$$e^{-}, \mu^{-}, K^{-}, \pi^{-}, p^{+}$$
 are closer to *b* jet

-
$$e^+$$
, μ^+ , K^+ , π^+ , p^- are closer to \bar{b} jet

• For $Z \rightarrow c\bar{c}$ samples:

-
$$e^+$$
, μ^+ , K^- , π^+ , p^+ are closer to c jet

-
$$e^-$$
, μ^- , K^+ , π^- , p^+ are closer to \overline{c} jet

- Combine the information of final leading particles of two jets
- Use those observables(charge, energy) of final leading particles to measure jet charge
- Use Misjudgment rate ω and effective tagging power to describe Jet Charge

How to describe Jet Charge?

Misjudgment rate ω:

• To describe the probability of misjudging the jet charge $M = \frac{Number \text{ of selected particles that incorrectly reflect the charge flow of b jet to } \bar{b} \text{ jet}}{M}$

Number of selected final leading particles

Efficiency:

- To describe the selection efficiency of $Z \rightarrow b\bar{b}$ or $Z \rightarrow c\bar{c}$ samples: $Efficiency = \frac{Number \ of \ selected \ final \ leading \ particles}{Number \ of \ all \ final \ leading \ particles}$
- The selected final leading particles are particles with typical flavor and energy cut and the charges of two leading particles of each jet are verse

Effective tagging power ETP:

To consider both misjudgment rate ω and efficiency to describe the total performance of Jet Charge

Effective tagging power = *Efficiency* * $(1 - 2 * \omega)^2$

Steps of studying Jet Charge

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Categorize the final leading particles:

(*e*, *μ*, *K*) & (*π*, *proton*)

- 2. Calculate the misjudgment rate ω and effective tagging power of each category
- 3. Change the energy threshold of the final leading particles
- 4. Study the effective tagging power in details of each B/C hadron
- 5. Using not only "charge verse" samples, but also "charge same" samples by energy information of the final leading particles

Steps of studying Jet Charge

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. → Categorize the final leading particles:

Yangzhou's presentation

(*e*, μ , *K*) & (π , *proton*)

- 2. Calculate the misjudgment rate ω and effective tagging power of each category
- 3. Change the energy threshold of the final leading particles
- 4. Study the effective tagging power in details of each B/C hadron
- 5. Using not only "charge verse" samples, but also "charge same" samples by energy information of the final leading particles

Steps of studying Jet Charge

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. → Categorize the final leading particles:

Yangzhou's presentation

(*e*, μ , *K*) & (π , *proton*)

2. Calculate the misjudgment rate ω and effective tagging power of each category $Z \rightarrow b\bar{b}$ Total Effective Tagging Power = 0.127

 $Z \rightarrow c\bar{c}$ Total Effective Tagging Power = 0.282

3. Change the energy threshold of the final leading particles

No energy threshold is the best case

- 4. Study the effective tagging power in details of each B/C hadron
- 5. Using not only "charge verse" samples, but also "charge same" samples by energy information of the final leading particles

Results

Number of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3	Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05	0	0.016%	1.241%	0.758%	6E-05
1	1.25%	96.08%	0.03%	0.05%	1	1.237%	94.744%	0.030%	0.461%
2	0.61%	0.03%	0.03%	2E-07	2	0.754%	0.031%	0.205%	6E-05
3	8E-06	0.05%	3E-07	2E-07	3	6E-05	0.464%	5E-05	2E-05
	each jet has one B					each	jet has o	one C	

Number of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3		Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05		0	0.016%	1.241%	0.758%	6E-05
1	1.25%	96.08%	0.03%	0.05%		1	1.237%	94.744%	0.030%	0.461%
2	0.61%	0.03%	0.03%	2E-07	ŝ	2	0.754%	0.031%	0.205%	6E-05
3	8E-06	0.05%	3E-07	2E-07		3	6E-05	0.464%	5E-05	2E-05
82.4% decayed to leading particle 66.2% decayed to leading partic									ticle	

Number of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3	Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05	0	0.016%	1.241%	0.758%	6E-05
1	1.25%	96.08%	0.03%	0.05%	1	1.237%	94.744%	0.030%	0.461%
2	0.61%	0.03%	0.03%	2E-07	2	0.754%	0.031%	0.205%	6E-05
3	8E-06	0.05%	3E-07	2E-07	3	6E-05	0.464%	5E-05	2E-05

This Report is based on all cases

$Z \rightarrow b\bar{b}$ Percent of B hadrons of b jet and \bar{b} jet

percent bbar jet → b jet ↓	Bº	B+	₿s ⁰	B _c +	∧bar	others	all
B ⁰ bar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅⁰bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
۸ _b	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

$Z \rightarrow b\bar{b}$ Percent of B hadrons of b jet and \bar{b} jet

percent bbar jet → b jet ↓	Bº	B+	₿s ⁰	B _c +	Λ_b bar	others	all
B ⁰ bar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅⁰bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
۸ _b	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

$Z \rightarrow c\bar{c}$ Percent of C hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	Dºbar	D-	D₅⁰bar	۸c	others	all
Dº	4.654%	13.302%	1.717%	0.005%	1.853%	21.532%
D+	13.290%	37.933%	4.887%	0.012%	5.220%	61.342%
D _s ⁰	1.712%	4.894%	0.631%	0.002%	0.690%	7.929%
∧cbar	0.005%	0.013%	0.002%	0.005%	0.041%	0.006%
others	1.836%	5.163%	0.679%	0.045%	1.414%	9.137%
all	21.500%	61.306%	7.916%	0.006%	9.218%	100%

$Z \rightarrow c\bar{c}$ Percent of C hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	Dºbar	D-	D₅⁰bar	۸c	others	all
D ⁰	4.654%	13.302%	1.717%	0.005%	1.853%	21.532%
D+	13.290%	37.933%	4.887%	0.012%	5.220%	61.342%
D _s 0	1.712%	4.894%	0.631%	0.002%	0.690%	7.929%
∧cbar	0.005%	0.013%	0.002%	0.005%	0.041%	0.006%
others	1.836%	5.163%	0.679%	0.045%	1.414%	9.137%
all	21.500%	61.306%	7.916%	0.006%	9.218%	100%

${f Z} ightarrow bar{b}$ Percent of final charged leading particles of b jet and $ar{b}$ jet

The distribution of each charged particle of two jets is asymmetry

Percent of final charged leading particles of \bar{b} jet

25

$Z \rightarrow c\bar{c}$ Percent of final charged leading particles of c jet and \bar{c} jet

The distribution of each charged particle of two jets is asymmetry

Percent of final charged leading particles of *c* jet

Charge verse, Charge same, Charge correct

29

For leading e, μ, K of b jet and \overline{b} jet

For leading e, μ, K of c jet and \overline{c} jet

Charge verse, Charge same, Charge correct

For leading e, μ, K of b jet and \overline{b} jet

For leading e, μ, K of c jet and \bar{c} jet

Two methods of using energy information for same charge samples

About 7.9% and 6.7% improvement for $Z \rightarrow b\bar{b} \& Z \rightarrow c\bar{c}$ samples

1. For the two leading particles of two jets, measure jet charge by the charge of the leading particle with higher energy.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.127 to 0.137

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.127 to 0.136

2. For the two leading particles and two sub-leading particles of two jets, measure jet charge by the charge of the leading particle which has higher energy difference with the sub-leading particle.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.282 to 0.301

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.282 to 0.294

Two methods of using energy information for same charge samples

The first method is better

1. For the two leading particles of two jets, measure jet charge by the charge of the leading particle with higher energy.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.127 to 0.137

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.127 to 0.136

2. For the two leading particles and two sub-leading particles of two jets, measure jet charge by the charge of the leading particle which has higher energy difference with the sub-leading particle.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.282 to 0.301

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.282 to 0.294

$Z \rightarrow b\bar{b}$ Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ₀	B+	B _s 0	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	B _s 0	B _c +	Λ_b bar
Bºbar	7.792	14.044	3.491	8.346	20.179	B ⁰ bar	8.403	15.213	3.775	8.961	22.144
B-	13.965	20.604	8.734	14.568	27.854	B-	15.137	22.434	9.500	16.784	30.450
B₅⁰bar	3.486	8.882	0.363	3.046	13.346	B₅⁰bar	3.730	9.673	0.382	3.406	14.756
Bc⁻	7.820	14.426	0.774	-	23.294	B _c -	8.639	15.817	1.061	-	25.021
۸ _b	20.268	27.788	13.064	22.841	37.460	۸b	22.224	30.313	14.518	26.729	40.840

charge verse

$Z \rightarrow b\bar{b}$ Effective Tagging Power with error of B Hadrons

Total Effective Tagging Power = $(13.716 \pm 0.014)\%$

% bbar jet → b jet ↓	Bo	B+	Bs ⁰	B _c +	Λ_b bar
B ⁰ bar	8.403	15.213	3.775	8.961	22.144
	±0.026	±0.037	±0.037	±0.768	±0.110
B-	15.137	22.434	9.500	16.784	30.450
	±0.047	±0.062	±0.063	±1.071	±0.134
B₅⁰bar	3.730	9.673	0.382	3.406	14.756
	±0.037	±0.063	±0.024	±0.954	±0.187
B _c -	8.639 ±0.732	15.817 ±1.063	1.061 ±0.495	-	25.021 ±3.309
۸ _b	22.224	30.313	14.518	26.729	40.840
	±0.110	±0.134	±0.186	±3.322	±0.3915

$Z \rightarrow b\bar{b}$ Weighted Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ₀	B+	B₅ ⁰	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ₀	B+	B _s 0	B _c +	∧₀bar
B ⁰ bar	1.353	2.437	0.118	0.002	0.557	Bºbar	1.459	2.640	0.127	0.002	0.611
B-	2.423	3.577	0.294	0.003	0.770	B-	2.627	3.895	0.320	0.004	0.842
B₅⁰bar	0.117	0.299	0.002	0.0001	0.073	B₅⁰bar	0.125	0.325	0.003	0.0001	0.080
B _c -	0.002	0.003	0.00003	-	0.0008	Bc⁻	0.002	0.003	0.00005	-	0.0009
Λ_{b}	0.560	0.768	0.071	0.0008	0.169	۸ _b	0.614	0.837	0.079	0.001	0.184

charge verse

$Z \rightarrow c\bar{c}$ Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	D ⁰ bar	D-	D _s ºbar	۸c	% cbar jet → c jet ↓	Dºbar	D-	D _s ºbar	Λ_{c}
D ⁰	25.605	28.561	21.514	19.581	D ⁰	27.184	30.702	22.353	21.430
D+	28.544	31.285	24.395	20.631	D+	30.644	33.779	25.816	23.834
D _s 0	21.452	24.252	17.423	17.200	D _s 0	22.287	25.670	18.006	18.191
∧ _c bar	17.549	23.176	16.968	9.852	Λ _c bar	19.851	25.439	18.952	11.079

charge verse

$Z \rightarrow c\bar{c}$ Effective Tagging Power with error of C Hadrons

Total Effective Tagging Power = $(30.116 \pm 0.022)\%$

% cbar jet → c jet ↓	Dºbar	D-	D₅⁰bar	۸ _c
D0	27.184	30.702	22.353	21.430
	±0.098	±0.062	±0.144	±2.681
D+	30.644	33.779	25.816	23.834
	±0.062	±0.039	±0.093	±1.801
D _s 0	22.287	25.670	18.006	18.191
	±0.144	±0.093	±0.204	±3.931
۸cbar	19.851	25.439	18.952	11.079
	±2.628	±1.783	±3.898	±5.685

$Z \rightarrow c\bar{c}$ Weighted Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	D ⁰ bar	D-	D _s ºbar	۸c	% cbar jet → c jet ↓	Dºbar	D-	D _s 0bar	۸c
D ⁰	1.192	3.800	0.370	0.0009	D0	1.265	4.085	0.384	0.001
D+	3.794	11.870	1.1925	0.002	D+	4.074	12.817	1.262	0.003
D _s 0	0.367	1.187	0.110	0.0003	D _s 0	0.382	1.257	0.114	0.0003
∧ _c bar	0.0008	0.003	0.0003	0.00005	Λ _c bar	0.0009	0.003	0.0004	0.00006

charge verse

Conclusion

Main results:

- For $Z \rightarrow b\bar{b}$ at Truth level:
 - Using only charge verse, effective tagging power = 0.127
 - Using also charge same, effective tagging power = 0.137
- For $Z \rightarrow c\bar{c}$ at Truth level:
 - Using only charge verse, effective tagging power = 0.282
 - Using also charge same, effective tagging power = 0.301
- For different B/C hadrons of $Z \rightarrow b\bar{b} \& Z \rightarrow c\bar{c}$:
 - Effective tagging power
 - High dependence of different hadron channels

Next...

 \square Jet Charge in typical channels (e.g. B_s , B_c , Λ_b , ...)

Thanks!

Back Up

$Z \rightarrow b\bar{b}$ Correlation Measurement of B hadrons of b jet and \bar{b} jet

σ bbar jet → b jet ↓	B ⁰	B+	Bs ⁰	B _c +	∧bbar
B ⁰ bar	12.475	11.195	4.459	0.612	0.069
B-	11.216	11.930	3.359	0.670	1.456
B₅⁰bar	1.424	2.830	0.749	-0.185	4.988
B _c -	-0.658	-0.598	-0.181	0.200	0.537
Λ_{b}	0.848	0.829	3.774	0.537	5.644

 $\sigma = \frac{Residual}{Uncertainty}$

$Z \rightarrow c\bar{c}$ Correlation Measurement of C hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	Dºbar	D-	D₅⁰bar	۸c
Do	4.898	13.006	4.039	-52.660
D+	11.554	27.343	5.356	-98.559
D _s 0	2.389	6.724	1.483	-29.477
∧cbar	-50.636	-88.425	-28.634	8.590

 $\sigma = \frac{Residual}{Uncertainty}$