Status of The Fourth Conceptual Detector

Jianchun Wang IHEP, CAS

CEPC IAC Review, Nov 1-5, 2021

CEPC Detectors in The CDR (I)

CEPC Detectors in The CDR (II)

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement		
$\begin{array}{l} ZH,Z\rightarrow e^+e^-,\mu^+\mu^-\\ H\rightarrow \mu^+\mu^- \end{array}$	$m_H, \sigma(ZH)$ BR $(H o \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$		
$H \to b\bar{b}/c\bar{c}/gg$	${ m BR}(H o b ar b / c ar c / g g)$	Vertex	$\sigma_{r\phi} = 5 \oplus rac{10}{p({ m GeV}) imes \sin^{3/2} heta}(\mu{ m m})$		
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E= 3\sim 4\%$ at 100 GeV		
$H \to \gamma \gamma$	${\rm BR}(H o \gamma \gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$		

- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

The 4th Conceptual Detector Design

A Drift Chamber That is Optimized for PID

A Drift Chamber for PID

- TPC perform both tracking & PID. But it is a challenge to cope with high luminosity Z runs.
- A Full Silicon Tracker works at high luminosity, but has disadvantage in PID.
- A drift chamber (DC) between the FST layers for > 2σ K/ π separation (P < 20 GeV).
- It can be optimized specifically for PID, without worrying about its tracking performance.

- ① Increase the cell size.
- ② No stereo layers.
- ③ Maybe slow drift velocity.
- ④ Optimal # of primary ionization.

5 ...

- Conventionally, dE/dx method is used for PID by measuring energy loss over the track length
 - Usually limited to < 10 GeV
 - One limiting factor is the Landau tail
 - Truncated mean leads to a loss of part of the measured information
- Cluster counting method, or dN/dx, measures the number of primary ionizations, which follow Poisson distribution.
 - Less sensitive to Landau tails
 - Significantly improve the separation power

- dN/dx resolution:
- PID optimization requirement
 - Long sampling track length *L*
 - Large primary ionization density ρ_{cl}
 - High cluster counting efficiency *ε*

(Sufficient thickness of DC) (Suitable gas mixture) (Fast front-end electronics and low noise)

- Other concerns
 - Low material budget X/X₀ (minimize the impact of multiple scattering)
 - Location(Inner/Outer radius) (benefit tracking and momentum measurement)

Simulation and Reconstruction of PID Drift Chamber

from Garfield++ Gas composition: He 90% + iC₄H₁₀ 10%

Induced current

<u>Cell size:</u> 1x1 cm <u>Particle:</u> 10 GeV/c pions, θ = 90 deg <u>Average N_{cl}:</u> ~16.5

Simulation of preamplifier

Simulation of noises

 Add white noises to the raw current signal

Peak finding analysis

- Moving average (MA) filter: $MA[i] = \frac{1}{M} \times \sum_{k=0}^{K < M} S[i - k] \text{ (smoothing)}$
- First difference (D1) filter:
 D1[i] = MA[i] MA[i 1]

A joint effort with the IDEA detector study group

K/π Separation Power

With a simple scaling, a ~80 cm thick drift chamber would deliver 2σ K/ π separation at 20 GeV.

PID Efficiency

For P<20 GeV, K/ π PID efficiency > 90%, misidentification rate < 10%

Simulation of Gas Mixture

High cluster density ρ_{cl} compatibly with the cluster

Low drift velocity helps identify clusters in time

dN/dx measurement and spatial resolution

Smaller longitudinal diffusion would benefit both

Cluster density vs ratio of He

Diffusion effect vs drift distance Drift time vs drift distance Gain vs H.V. 10 1000000 500 · He70% He70% 80% He - He80% 90% He He80% Arrival time spread (ns) 400 He90% He90% Drift time (ns) 100000 Gain 10000 2 100 0 1000 10 10 1400 8 1300 1500 1600 1700 1800 Drift distance (mm) Drift distance (mm) Voltage (V)

11/02/2021

✤ To optimize gas mixture

counting efficiency *c*

1900

Effects of The Cell Size

□ Increasing the cell size, e.g. x2, has very little effect on the PID performance.

- □ But it would reduces the number of wires, hence production difficulty, number of readout channels, and material of the supporting structure (mostly at the outer cylinder).
- □ However, the tracking performance would be worse.

Prototype Test with A Radiation Source

- Prototype test to provide realization parameters for simulation (ongoing)
- Coincidence of scintillator counter trigger provides constraint of incident track angle and track length of electrons from ⁹⁰Sr source.

Proportional tube (φ32mm)

Preamplifier GBP: 8 GHz

- The criteria of 2σ K/ π separation at P<20 GeV is very simplified.
- The drift chamber configuration may also affect the locations of FST layers, and the material before the calorimeters. Thus the impacts on other sub-detectors need to be included in the optimization.
- Ultimately it is the physics reach that decides which configuration is better.
- Benchmark modes were selected for a more meaningful comparison. The studies are on-going with the DC simulation and reconstruction software in progress.
 - $B_s \rightarrow (D_s \rightarrow KK\pi) \pi$
 - $B^0_{(s)} \to hh$
 - $H \rightarrow jj$

A Transverse Crystal Bar ECAL That is Compatible with PFA

A PFA Compatible Crystal ECAL

- ✤ Calorimetry @ CEPC
 - Precision measurements with Higgs and Z/W
 - Jet energy resolution better than $30\%/\sqrt{E_{jet}(\text{GeV})}$
 - Particle flow paradigm: high-granularity calorimetry
- ✤ Why a crystal ECAL, (instead of Si W)?
 - Even though: larger probability of shower overlap, larger probability of hadronic shower in ECAL comparing to a SiW PFA ECAL
 - Homogeneous structure with EM energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - High sensitivity to low energy particles
 - Capability to trigger single photons
 - Precision γ/π^0 reconstruction: flavour and BSM physics
 - Finely segmented crystals: PFA capability for jets.

Component	Detector	Energy Fraction	Energy Resolution	Jet Energy Resolution
Charged Particles (X^{\pm})	Tracker	~0.6 E _J		_
Photons (γ)	ECAL	$\sim 0.3 E_J$	$0.15\sqrt{E_{\gamma}}$	$0.08\sqrt{E_J}$
			$0.03\sqrt{E_{\gamma}}$	$0.016\sqrt{E_J}$
Neutral Hadrons (h^0)	HCAL	$\sim 0.1 E_J$	$0.55 \sqrt{E_{h^0}}$	$0.17 \sqrt{E_J}$

$\sigma_{Jet} = \sqrt{1}$	$\sigma_{Track}^2 + \sigma_{Had}^2 + \sigma_{em}^2 + \sigma_{Confusion}^2$
---------------------------	--

- A crystal bar ECAL
 - Homogeneous BGO crystal.
 - Bar size ~40×1×1 cm³, time measurements at two ends for position along the bar.
 - Crossed arrangement in adjacent layers. Two layers form a super cell module: ~40×40×2 cm³.
 - Reduce readout channels, minimize dead materials.
- Key issues:
 - Ambiguity caused by 2D measurements (ghost hit).
 - Identification of energy deposits from individual particles (confusion).
- Ongoing work:
 - Use ArborPFA software & crystal cubes of 1 cm³ in size to study PFA performance, compare with SiW ECAL.
 - Develop a proto-PFA new software that has separation capability of multiple incident particles.
 - Bench test of crystal bars.

8 trapezoidal staves R=1.8m, L=4.6m, H=28cm

Two 5 GeV γ 's

Sketch of ECAL in r-z plane

- Two gammas (5GeV): varying distance
- Efficiency definition: successful reconstruction of at least 2 neutral particles, both in 3.3GeV<E<6.6GeV
- Removed events with γ -conversion before entering ECAL
- Applied energy calibration

Crystal: distance 50 mm successfully reconstructed

- Similar separation performance achieved in two ECAL options: crystal and SiW
- Next step: try to apply shower profile information (benefits of fine segmentation)

Separation Power of $\pi^+\gamma$

10GeV π^+ and 5GeV γ

Separation of a gamma and a charged pion

pi+/gamma Separation Efficiency Leading+NextLeadingPFOEnergy Separation Efficiency / % Number Crystal 100 SiW 500 Crystal ECAL 400 SIW ECAL 60 300 200 **Distance 50mm** 20 100 0 E 14 18 20 22 24 350 12 16 50 100 300 150250 Energy / GeV Distance / mm

• Next step: try to apply shower profile information (benefits of fine segmentation)

Failure in track-calo matching: cluster of photon (left) was wrongly absorbed into the cluster of π^+ (right), the energy of photon would be lost

- 10GeV π^+ and 5GeV γ : varying distance
- 3 T magnetic field
- π^+ momentum measured by tracker
- Efficiency definition: successful reconstruction of 3.3GeV<E_N<6.6GeV, 9.9GeV<E_C<10.1GeV
- Removed events with γ/π^+ interactions before entering ECAL
- Applied energy calibration

Crystals show optimal performance in general, especially at a few GeV

- ♦ Full simulation studies with $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$ at 240 GeV
 - Promising BMR (Boson Mass Resolution)
 - Identified impacts of the geometry boundaries

Structures around the Higgs invariant mass peak

Gaps in the barrel ECAL (octaves)

- Physics benchmark: $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- Potentials to be explored with more information: e.g. shower profile, timing, etc.

A New Proto-PFA Software

No track-calo matching, fragment absorption, etc

- Dimension **
 - Clustering and energy splitting
- 2 Dimension *
 - Matching energy and time measurements in adjacent layers

Ngoodclus

≥ 1: 100%

Entries

Ngoocicius

3 Dimension *

40 30 25

11/02/2021

Cone clustering longitudinally.

70

50 –

30

Single

Photon

Separation power of two 5 GeV γ 's in parallel

- Developing a new PFA software for crystal ECAL:
 - Traditional PFA: fine granularity + small R_M + less hits (sampling) for separation.
 - Crystal PFA: precise energy (homogeneous) + shower profile for separation.
- * χ^2 method for ghost hit removal is very efficient. \rightarrow Ghost hit problem \checkmark
- ♦ Energy splitting shows potential for particle separation. → Confusion
- Preliminary result is promising.
- Many details still need optimization:
 - Clustering efficiency,
 - Fragment absorption (cluster merging),
 - Cluster ID efficiency & mis-ID rate,

• • • • • • •

Geant4 10.7

- ✤ 40×1×1 cm³ long BGO crystal bar
- ✤ 662 keV gamma from Cs-137
- Varying Cs-137 positions

• Generally good response uniformity expected in G4 simulation

First Measurements of The Uniformity Scan

- Setup: 400mm long BGO crystal (with ESR foil) and ¹³⁷Cs source
- The same configuration as the simulation

- Trends are not significant enough due to the systematic difference between 2 SiPMs
- Refractive indices of materials
 - Air: 1.00
 - Epoxy: 1.52
 - BGO: 2.15
- Ongoing activities: to use optical grease to improve the crystal-SiPM coupling and reproducibility

Impacts of Wrapping and Surfaces

✤ ESR foil wrapping and polished surface show better energy resolution

Impacts of Crystal Length

- PMT has better acceptance (full coverage of crystal transverse area) than SiPM; to be updated with larger SiPMs
- Further comparisons will be done with simulation

A PFA HCAL Based on Scintillation Glass

- On-going R&D of a HCAL of steel + plastic scintillator + SiPM.
- The plastic scintillator can be replaced with scintillation glass, e.g. those in the table.

Sample nos. Molar compositions	Density (g/cm ³)	Radiation length (cm)	Integrated light yield (% of BGO)
SO 20SiO ₂ -35B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -15Gd ₂ O ₃	5.6	-	-
S1 20SiO ₂ -38B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -10Gd ₂ O ₃ -2CeF ₃	5.2	1.81	54
S2 20SiO ₂ -33B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -15Gd ₂ O ₃ -2CeF ₃	5.6	1.67	87
S3 20SiO ₂ -28B ₂ O ₃ -15BaF ₂ -15Lu ₂ O ₃ -20Gd ₂ O ₃ -2CeF ₃	6.0	1.56	58
S4 20SiO ₂ -38B ₂ O ₃ -15BaF ₂ -10Lu ₂ O ₃ -15Gd ₂ O ₃ -2CeF ₃	5.1	1.89	81
S5 20SiO ₂ -28B ₂ O ₃ -15BaF ₂ -20Lu ₂ O ₃ -15Gd ₂ O ₃ -2CeF ₃	6.2	1.48	86

Wang, Qian, et al. "High light yield Ce3+-doped dense scintillating glasses." Journal of alloys and compounds 581 (2013): 801-804.

Simulation study of K_L particle gun on a Scintillation Glass HCAL. ScintGlass: ρ =5.1 g/cm³, X₀=1.89 cm, light yield = 81% of BGO

11/02/2021

Lab Setups To Study ScintGlass

Transmission Spectrum Measurement

Emission Spectrum Measurement

Light Yield Measurement

Samples of Scintillation Glass

Sample from JGSU

A small collaboration may be formed soon to study scintillation glasses and share information.

Quick Test Results of Samples

Performance Comparison & Goal

Туру	Composition	Density (g/cm ³)	Light yield (ph/MeV)	Decay time (ns)	Emission peak(nm)
Scintillator Glass In Paper	Ce-doped high silica glass	4.37	3460	522	431
	Ce-doped gadolinium borosilicate glass	4.94	1120	29.3	394
	Ce-doped fluoride glass	6.0	2400	23.4	348
Plastic Scintillator	BC408	~1.0	5120 ?	2.1	425
	BC418	~1.0	5360 ?	1.4	391
Crystal	GAGG:Ce	6.6	50000	50.1	560
	LYSO:Ce	7.3	25000	40	420
Scintillator Glass for CEPC	?	>7	>1000	50	350-500
Scintillator Glass Sample in Lab	Ce-doped-Gd-glass	~4.5	~120	~400	400
	Ce-doped-Si-Ba-glass	~5.0	~70	~170	500-550

A HTS Magnet To Be Placed Inside HCAL

Solenoid Magnet Inside HCAL

> Magnet due to polygon HCAL

HTS Prototype Cable Development

Prototype cable: 15×10 mm², Tape Width: 4 mm, thickness: 80 µm; tape layer: 20, Expected operating current: 6000 A@5K

Big Progress: 10 m ASTC prototype cable is ready. Cable test is ongoing.

- ✤ A few new ideas of the detector technologies are being explored:
 - Drift chamber that is optimized to maximize its particle ID potential,
 - Transverse crystal bar ECAL which is also compatible with PFA,
 - PFA HCAL based on scintillation glass,
 - HTS magnet that is inside HCAL.
- A workshop on the 4th conceptual detector at Yangzhou, April 14-17, 2021. https://indico.ihep.ac.cn/event/13888/
- Busy R&D work, several papers in preparation.