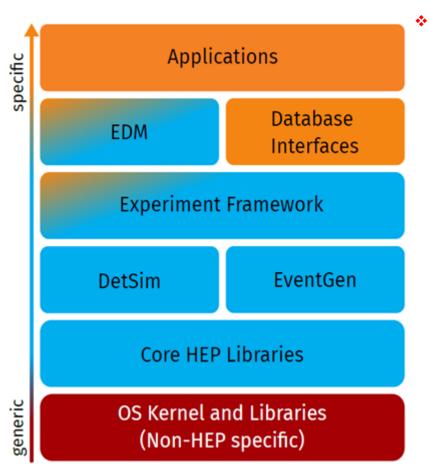
Development of CEPC Software and Computing

Weidong LI, IHEP/CAS

representing CEPC software and computing team


7th CEPC IAC meeting

2nd November, 2021

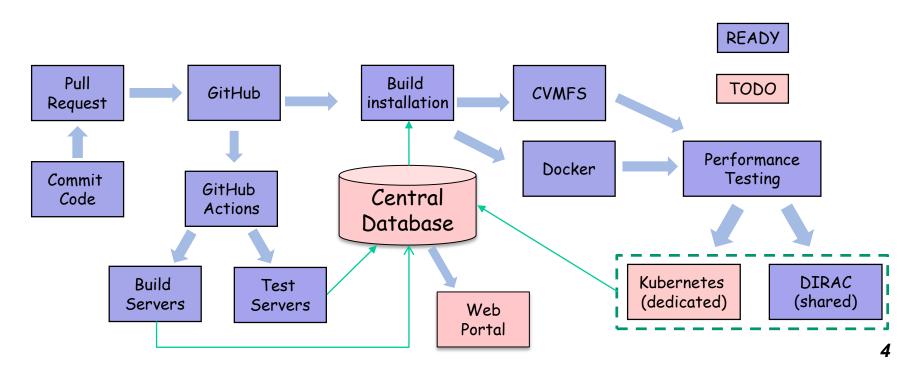
Contents

- Introduction
- Core software
- Simulation framework
- Detector algorithms
- CEPC computing
- Future plan
- Summary

Introduction

The Key4hep is being developed to provide a common software stack for CEPC, CLIC, FCC and ILC experiments:

- Application layer of modules/algorithms/processors performing physics task
- Data access and representation layer
- Experiment core orchestration layer
 - (Marlin, Gaudi, CMSSW, ...)
- Specific components reused by many experiments
 - (DD4hep, Delphes, Pythia, ...)
- Core HEP libraries
 - (ROOT, Geant4, CLHEP, ...)
- Commonly used tools and libraries
 - (Python, CMake, boost, ...)

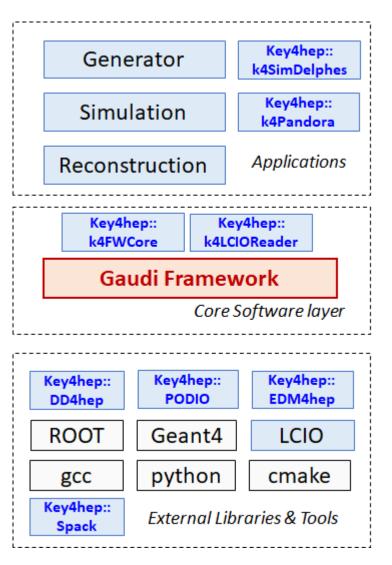

IHEP and SDU are involved in Key4hep development as non-EU members.

From Thomas Madlener, Epiphany Conference 2021 *

The CEPC software (CEPCSW) will be fully integrated with the Key4hep to share software with other future experiments.

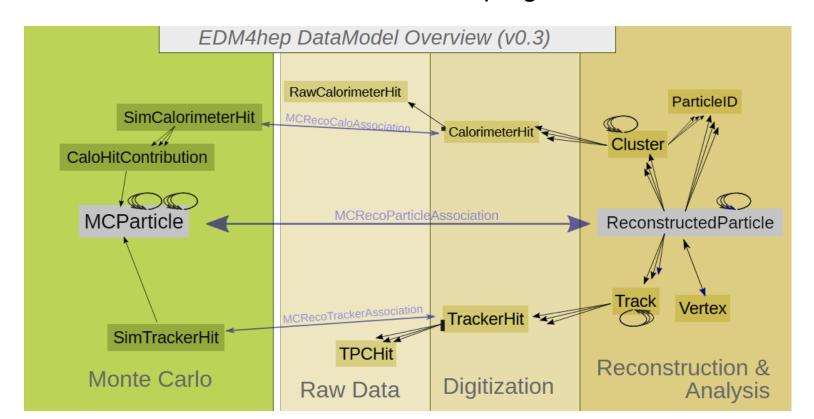
Development environment

- C++ 17 and Python 3 are the main programing languages and operation system used is CentOS 7
- GitHub is chosen as the source code repository and the pull-request mechanism is used to synchronize all developers' work.
- Automated validation system is being developed to run testing and validation automatically at different levels.

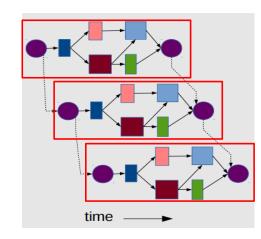

CEPCSW core software

CEPCSW software structure

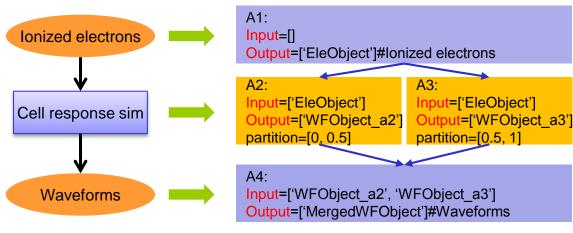
- Core software
- Applications: simulation, reconstruction and analysis
- External libraries


Core software

- Gaudi/Gaudi Hive: defines interfaces to all software components and controls their execution.
- CEPC-specific framework software: generator, Geant4 simulation, beam background mixing, fast simulation, machine learning interface, etc.
- EDM4hep: generic event data model for HEP experiments
- K4FWCore: manages the event data
- DD4hep: geometry description

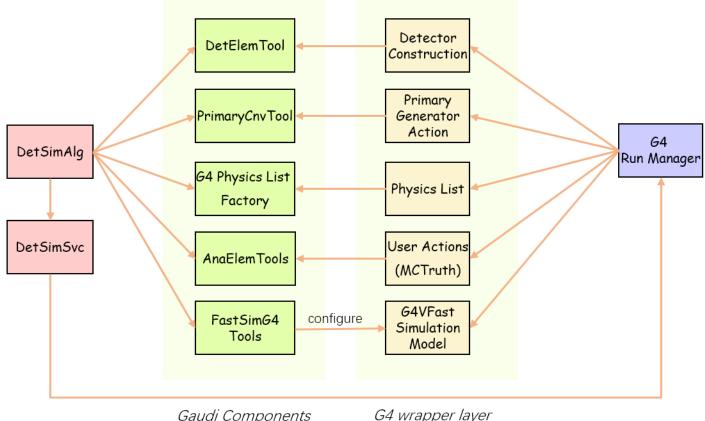

Event Data Model

- Adopted EDM4hep as the official EDM for CEPCSW
- k4LCIOReader was developed to convert the ILC format data to EDM4hep objects on fly
- Extension of the current EDM4hep to accommodate the needs from dN/dx studies of the drift chamber is in progress

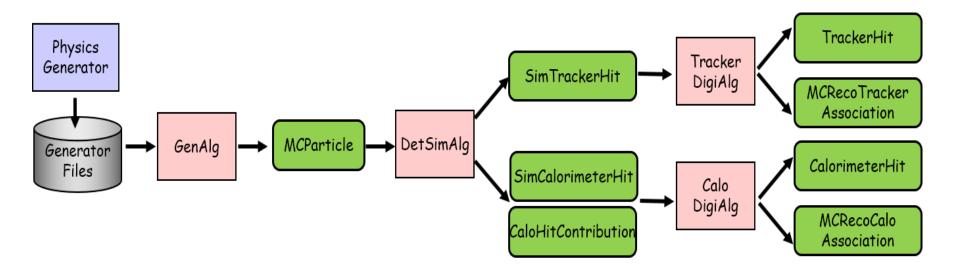


Multi-threading with Gaudi Hive

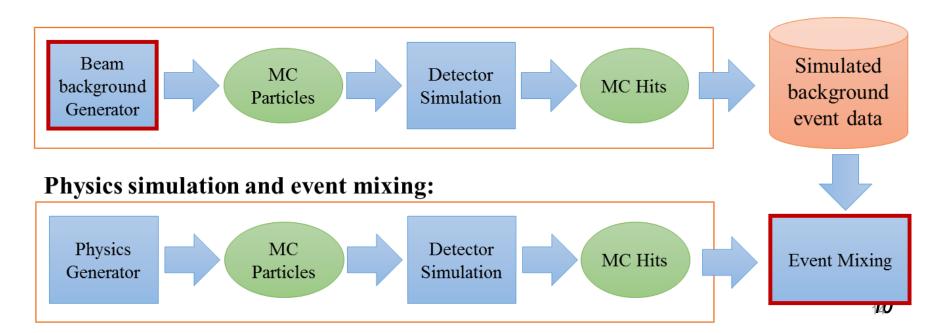
- Gaudi Hive is a Gaudi extension supporting multithreading and concurrent computing
- Multiple algorithms and events can be executed simultaneously using the data flow driven mechanism
 - Algorithms declare their data dependencies
 - Scheduler automatically executes Algorithms as the data becomes available


- The multi-threaded simulation of the detector response in drift chamber was developed as the first attempt to use Gaudi Hive.
- The multi-threaded simulation works well and it was reported at the Key4hep meeting.

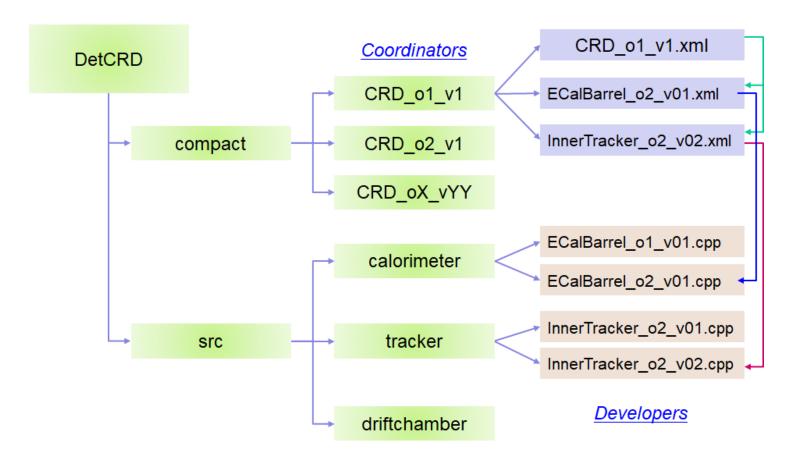
https://indico.cern.ch/event/1076542/#4-gaudihive-in-cepc-driftchamb


Simulation framework (1)

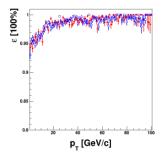
- The detector simulation framework has been developed in CEPCSW.
 - A thin layer is developed to connect Geant4 and Gaudi.
 - The event loop is controlled by Gaudi with a customized G4RunManager.
 - The geometry conversion from DD4hep to Geant4 is done by DDG4.

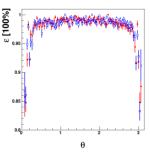

Simulation framework (2)

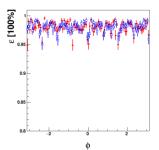
- The full simulation chain from physics generator to digitization is completed.
- Data objects as well as M.C. Truth information are available for detector performance studies:
 - Physics generator generates the kinematics information of primary MC particles
 - Detector simulation provides the relationship between MC hits and MC Particles
 - Digitization creates the association between the Digi objects and Hit objects

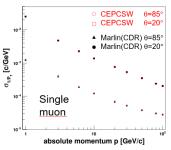

Simulation framework (3)

- DD4hep is used to provide a complete detector description with a single source of information
- The non-uniform magnetic field has also been implemented in the DD4hep framework.
- More realistic simulation needs to include beam-related backgrounds
 - The current design is to mix a physics event with backgrounds at MC hit level and implementation is in progress.

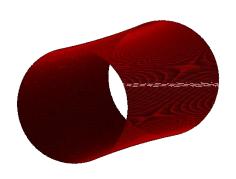

Simulation framework (4)

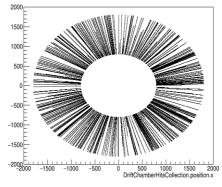

- Detector geometry management
 - A detector design option is defined by a compact file e.g. CEPC Reference Detector (CRD_o1-v1)
 - Details of sub-detectors are described by XML compact files and C++ constructors.



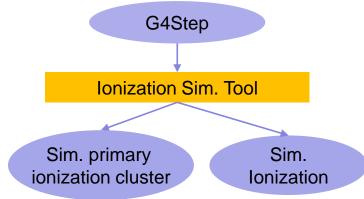

Tracking for Silicon Detector and TPC


- Migrated tracking and fitting algorithms from cepcsoft (ILDSoft based) to CEPCSW
 - Marlin→Gaudi
 - LCIO→EDM4hep
 - consistent performance
 - Marlin VS CEPCSW
 - (CEPCSW)simulated LCIO input VS generator simulating
- Fixed bugs to make running more stably
- Performance studies for the 4th conceptual detector
 - 6 pixel vertex + 4 pixel inside + drift chamber (regard as TPC hits in this fitting)+ 1 pixel outside
 - validate resolutions: similar tendency with fast estimation (<20%)
- Testing with non-uniform magnetic field
 - close resolutions with uniform field: $(\sigma_{Pt}-\sigma_{Pt,non})/\sigma_{Pt} \sim 4\%@100 GeV$
 - momentum departure from MC truth, to correct

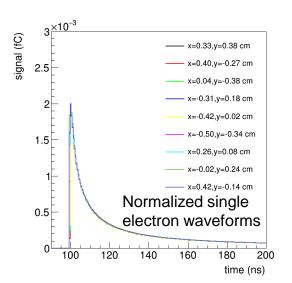


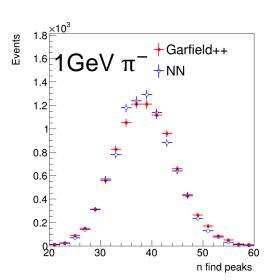


Simulation for the drift chamber


- Baseline configuration
 - Axial/stereo drift chambers with silicon layers
 - Radius 1~1.8m, 100 layers, He:iC₄H₁₀=90:10
- Simple digitization
 - Constant X-T (V_{drift} =40 μ m/ns) and fixed spatial resolution (110 μ m)
- Integration of Garfield++ with Geant4:
 - For each G4Step, Heed is used to simulate ionization process. The kinetics of G4Track will be updated according to its energy loss.
 - Tracking with Geant4 then continues and Garfield++ will take charge of simulation of the detector response in the cell.

Stereo layer of drift chamber


Hitmap of MC hits in DC



Integrating Garfield++ and Geant4 at G4Step

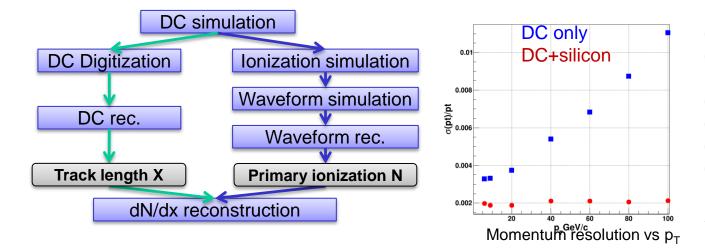
Fast waveform simulation

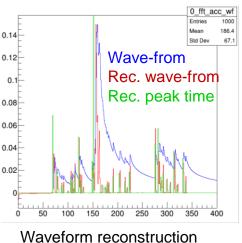
- Extremely time consuming to use Garfield++ to simulate
 - Drift of ions and electrons, amplification via electron avalanches and final signal generation
- Studies show that the waveform shape of each ionized electron in Garfield++ is similar. Main difference is the beginning time and amplitude
- Using machine learning technique to learn the distributions of beginning time and amplitude for each ionized electron
 - Training sample is produced by Garfield++

- ☐ Good agreement between NN and Garfield++
- □ ~200 times speed up

Reconstruction for the drift chamber

Track finding


- Truth tracking: track finding using MC truth information
- Traditional and machine learning based tracking have been planned

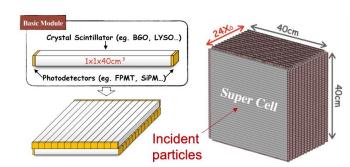

Track fitting

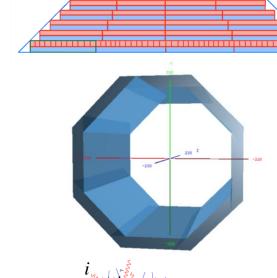
- Genfit-based kalman filter was used to handle material effects and non-uniformity of B field correction and produce track parameters
- Fitting to space points/wire/pixel/strip on a track has been tested and reasonable performance was obtained.

dN/dx reconstruction

Waveform reconstruction algorithm with Fourier transform method was imported from JUNO

ECAL Simulation and Digitization

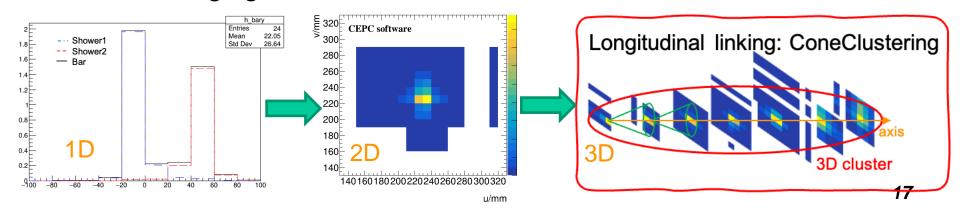

- Crystal ECAL
 - Homogeneous BGO crystal
 - Size: $1 \times 1 \times \sim 40 \text{ cm}^3$, double-sided readout.
 - Time measurement at two ends for position along the bar.
 - Crossed arrangement in adjacent layers.
 - Full detector: R = 1.8m, L = 4.6m, H = 28cm, 8 same trapezoidal staves.
- ECAL geometry was implemented in CEPCSW for Geant4 simulation
- Simple digitization for one long crystal bar
 - Contribution from G4step i:


$$Q_{\pm}^{i} = E_{0} \cdot e^{-\frac{\frac{L}{2} \pm z_{i}}{L_{Att}}}, \quad T_{\pm}^{i} = T_{0} + Gaus(z_{\pm}^{i}/v, \sigma_{T}).$$

Full crystal bar:

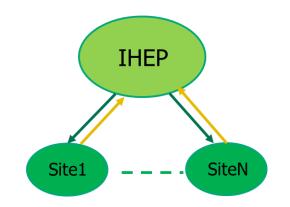
$$Q_{\pm} = \sum_{step} Q_{\pm}^i$$
, $T_{\pm} = T_{\pm}^k \mid \left(\sum_{i=1}^k Q_{\pm}^i > \epsilon Q_{\pm}^{tot}\right)$, $\epsilon = 5\%$.

Simplified condition: $L_{Att} = \infty$, so $Q_{\pm} = E_{tot}$.



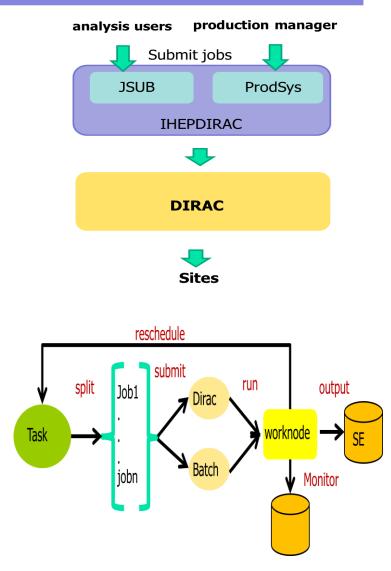
 $\{Q_+, T_+\}$

 $\{Q_{-}, T_{-}\}$

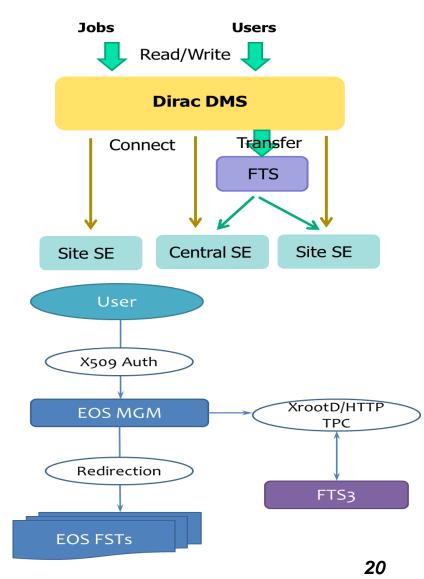

ECAL Reconstruction

- Reconstruction Iteration 0: roughly reconstruct clusters to remove hits not attributing to any cluster
- Reconstruction Iteration 1:
 - 1 dimension: clustering and energy splitting
 - 2 dimension: ghost hit removal in adjacent layers
 - 3 dimension:
 - Cone clustering longitudinally
 - Cluster ID: MIP (minimum ionizing particle) / EM / Hadronic showers
 - Merging clusters

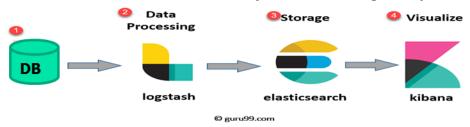
CEPC computing: computing model

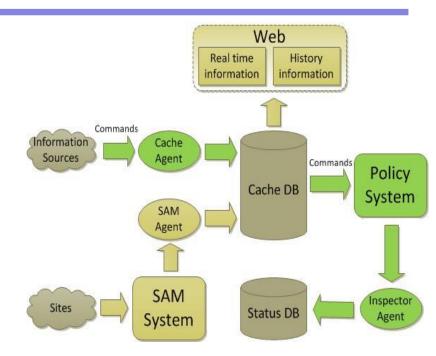

- The CEPC distributed computing system has been built using DIRAC
 - Six sites from UK and other China universities owning
 ~3000 CPU cores, ~3PB disk
 - 500 dedicated cores will be available at IHEP soon
 - Proved to work well with various types of computing resource including Grid, Cluster, Cloud, Commercial Cloud
- Applying a simple computing model
 - IHEP as the central site holding central storage
 - Remote sites only provide CPUs for MC production
 - Data flow
 - Input data of a job locates at IHEP
 - Output of the job will be transferred back to IHEP

Site Name	CPU Cores
Grid.IHEP.cn	500
CLOUD.IHEPCLOUD.cn	100
GRID.QMUL.uk	1600
CLUSTER.IPAS.tw	500
CLUSTER.SJTU.cn	100
GRID.LANCASTER.uk	300
Total (Active)	~3000


CEPC computing: workload management

- Managing job submission and work flow
- DIRAC
 - Provide a middle layer between jobs and resources to hide complexity from users
- JSUB (developed)
 - Massive job submission frontend was developed for data analysis users
- ProdSys (being developed)
 - Be used to submit and manage production tasks for the data production group
- Both JSUB and ProdSys can take care of job lifecycles in an automatic way


CEPC computing: data management


- Managing data placement and data flow globally, and providing interface for accessing data
- DIRAC Data Management System
 - File Catalogue: global view of data
 - Meta Catalogue: dataset management
- FTS (File Transfer System)
 - Manage file movements
 - fts3 server in IHEP: https://fts3.ihep.ac.cn
- Storage Element (SE)
 - Lustre as its backend now
 - EOS for newly purchased hardware



CEPC computing: monitoring

- Regular site and service status need to be checked to achieve high availability and reliability
- Monitoring dashboard was set up using Logstash + ES + Kibana
 - Give a view of sites and services status
- Site monitoring system was implemented in two ways to obtain site status
 - Active: send out standard CEPC jobs and check results periodically
 - Passive: collect user job status regularly

Plan for next year

Core software

- Moving towards multi-threading based on the Intel TBB (Threading Building Blocks)
- Providing user-friendly interfaces to machine learning libraries like TensorFlow and PyTorch
- Development of data analysis software using ROOT RDataFrame
- Deployment of the automated validation platform to support continuous integration

Simulation software

- Updating geometry information according to the latest detector designs
- Adding beam-related backgrounds
- Providing more realistic simulation of digitization process

Reconstruction software

- Performance optimization of tracking algorithms in silicon and TPC trackers
- Development of new pattern recognition algorithm for the drift chamber
- Improving the performance of 3D cluster identification in the long crystal bar ECAL
- Optimization of ArborPFA to improve PID performance for charged particles in the final state

Computing

The data production prototype will be built to facilitate massive Monte Carlo production

Summary

- Significant progress has been made since the CEPC workshop in Shanghai last year.
- The work plan will be adjusted according to the IAC's recommendations as well as feedbacks from the oncoming CEPC workshop.
- Both software and computing need more people's involvements in the future development.

