

中國科學院為能物記酬完備 Institute of High Energy Physics Chinese Academy of Sciences

CEPC Accelerator : TDR + R&D

J. Gao

On behalf of CEPC Accelerator Group

- there - I - there -

Seventh Meeting of the CEPC-SppC International Advisory Committee

Contents

• Introduction

- CEPC accelerator system optimization design in TDR
 - Collider rings
 - Booster
 - Linac
 - MDI

• CEPC Accelerator System Key Hardware R&D Progresses in TDR

- SRF (platform, cavities, other components, cryomodules...)
- 650MHz high power and high efficiency klystrons
- Magnets in collider and booster rings (dipoles, quadrupoles and sextupoles)
- Electro-magnet seperator
- Linac injector hardwares
- Final focus SC quadrupoles, sextupoles in IR region
- High presicion and high efficiency alignment instrument...
- CEPC Siting, Civil Engineering, Installation strategy, CIPC and International Collaborations
- CEPC Time Plan and Perspective for Accelerator TDR and EDR Plans
- Summary

Two CEPC IARC Meetings in 2021 (according to the recomendation from IAC in 2020)

The 2021 CEPC International Accelerator Review

Committee

Review Report

May 19, 2021

IARC chaired by Marica Biagini (INFN)

Overview

The CEPC International Accelerator Review Committee was held remotely due to the Covid-19 pandemic on May 11th and 12th 2021. This is the second to the entry hosted by The Circular Electron Positron Collider (CEPC+SppC) Study Group teently hosted by the Institute of High Energy Physics of the Chinese Accelerator is the sciences, completed the conceptual design of the CEPC accelerator is the science, completed the conceptual design of the CEPC accelerator is the second to science, completed the conceptual design of the CEPC accelerator is the science of the CEPC International Advisory Committee (IACC) oup began the Technical Design Report phase for the CEPC accelerator is the science of 2022. Meanwhile an International to the completion target year of 2022. Meanwhile an International to the completion interface region, and the compatibility with an upgrad to the study of the center of the cepc international workshop on Nov. 18-21, 2019. The charge for the Committee from the CEPC(SppC) team is the following:

IARC Meeting, May 11-12, 2021

https://indico.ihep.ac.cn/event/14295/other-view?view=standard

Biagini (INFN) The Circular Electron Positron Collider (CEPC) and the per Proton-Proton llider (SppC) Study Group, currently hosted by Carstitute of High En-

2021 Second CEPC IARC Meeting

IARC Committee

October 20th, 2021

Collider (SppC) Study Group, currently hosted by anstitute of High Energy Physics of the Chinese Academy of Scier 20 completed the conceptual design of the CEPC accelerator in 2018. A completed by the CEPC International Advisory Committee (IAC) accelerator in 2019, with a completion target year of 2022. Meanwhile and accelerator accelerator Review Committee (IARC) has been established and accelerator Review Committee (IARC) has been established and accelerator Review Committee region, and the competition of the study of the machine-detector interface region, and the competition of the study of the t-tbar energy region, as well as with a future of the competition of the study of the t-tbar energy region.

The second the Certain Accelerator Review Committee was held remotel to the Covid-19 pandemic on October 11th to 14th 2021. A total of 2 talks were presented on a variety of topics.

IARC Meeting, Oct.11-14, 2021

https://indico.ihep.ac.cn/event/15177/overview

CEPC Accelerator System Design and Optimizations inTDR

CEPC TDR Layout

Z [mm]

Inside of the ring

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

CEPC Linac injector of 20GeV

CEPC High Luminosity Parameters in TDR

	ttbar	Higgs	W	Z			
Number of Ips	2						
Circumference [km]		100.	0				
SR power per beam [MW]		30					
Half crossing angle at IP [mrad]	16.5						
Bending radius [km]		10.7	7				
Energy [GeV]	180	120	80	45.5			
Energy loss per turn [GeV]	9.1	1.8	0.357	0.037			
Piwinski angle	1.21	5.94	6.08	24.68			
Bunch number	35	249	1297	11951			
Bunch population [10^10]	20	14	13.5	14			
Beam current [mA]	3.3	16.7	84.1	803.5			
Momentum compaction [10^-5]	0.71	0.71	1.43	1.43			
Beta functions at IP (bx/by) [m/mm]	1.04/2.7	0.33/1	0.21/1	0.13/0.9			
Emittance (ex/ey) [nm/pm]	1.4/4.7	0.64/1.3	0.87/1.7	0.27/1.4			
Beam size at IP (sigx/sigy) [um/nm]	39/113	15/36	13/42	6/35			
Bunch length (SR/total) [mm]	2.2/2.9	2.3/3.9	2.5/4.9	2.5/8.7			
Energy spread (SR/total) [%]	0.15/0.20	0.10/0.17	0.07/0.14	0.04/0.13			
Energy acceptance (DA/RF) [%]	2.3/2.6	1.6/2.2	1.2/2.5	1.3/1.7			
Beam-beam parameters (ksix/ksiy)	0.071/0.1	0.015/0.11	0.012/0.113	0.004/0.127			
RF voltage [GV]	10	2.2	0.7	0.12			
RF frequency [MHz]	650	650	650	650			
HOM power per cavity (5/2/1cell)[kw]	0.4/0.2/0.1	1/0.4/0.2	-/1.8/0.9	-/-/5.8			
Qx/Qy/Qs	0.12/0.22/0.078	0.12/0.22/0.049	0.12/0.22/	0.12/0.22/			
Beam lifetime (bb/bs)[min]	81/23	39/18	60/717	80/182202			
Beam lifetime [min]	18	12.3	55	80			
Hour glass Factor	0.89	0.9	0.9	0.97			
Luminosity per IP[1e34/cm^2/s]	0.5	5.0	16	115			

Design Requirement of the CEPC Collider Ring (remind)

- SR power 30MW (50 MW upgradable), 100km, 2 IPs
- Crab waist collision
- Local chromaticity correction for the interaction region
- Non-interleaved sextupoles
- Correction of sawtooth orbit
- Shared cavities for two beam @ tt, Higgs
- Dual aperture dipole and quadrupole magnets
- Spin polarized beam @ Z (vertical polarization 5~10% with unsymetric wigglers)
- Asymmetric interaction region
- Compatible of $t\overline{t}/H/W/Z$ modes
- Compatible with SPPC

CEPC Collider Ring IR for all Energies

(tt-bar, Higgs, W and Z)

For the interaction region, the IP beta functions are refitted with the different combination of final doulets and the matching quadruples.

	QD	QF
Ζ	Q1A	Q1B
W/H	Q1A+Q1B	Q2
ttbar	Q1A+Q1B+Q2	add quad Q3A and Q3B

Higgs: L*=1.9m, LQ1A=1.22m, LQ1B=1.22m, LQ2=1.5m, d=0.3m, GQ1A=142T/m, GQ1B=96T/m, GQ2=56T/m

Y.W. Wang

CEPC Collider Ring ARC Regions for all Energies

(tt-bar, Higgs, W and Z)

Z and **W** modes need larger momentum compaction factor α_p and thus larger emittance ϵx , Qs

- To suppress the impedance induced instability at **Z mode**
- To increase stable tune area if considering beam-beam effect and impedance consistently at **W and Z modes** Stable tune area with both beam-beam and impedance (Z mode 90/90)

Y.W. Wang

CEPC TDR Lattices of Half Ring for all Energies

CEPC Collider Ring TDR Lattice Dynamic Aperture with Errors for Higgs

2021-11-1 J. Gao

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

11

Y.W. Wang

CEPC TDR Lattice Dynamic Apertures @ Z and ttbar

Y.W. Wang

New RF Staging & By-pass Scheme for CEPC

- **Stage 1 (H/W run for 8 years):** Keep CDR RF layout for H(HL-H)/W and 50 MW upgrade. Common cavities for H. Separate cavities for W/Z. Z initial operation for energy calibration and could reach CDR luminosity. **Minimize phase 1 cost and hold Higgs priority**.
- **Stage 2 (HL-Z upgrade)**: Move Higgs cavities to center and add high current Z cavities. **By-pass low current H cavities**. International sharing (modules and RF sources): Collider + 130 MV 650 MHz high current cryomodules.
- **Stage 3 (ttbar upgrade):** add ttbar Collider and Booster cavities. International sharing (modules and RF sources): Collider + 7 GV 650 MHz 5-cell cavity. Booster + 6 GV 1.3 GHz 9-cell cavity. Both low current, high gradient and high Q, Nb₃Sn etc. 4.2 K?

Unleash full potential of CEPC with flexible operation. Seamless mode switching with unrestricted performance at each energy until AC power limit. Stepwise cost, technology and international involvement with low risk.

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

CEPC Booster TDR parameters

- Injection energy: $10\text{GeV} \rightarrow 20\text{GeV}$ •
- Max energy: $120 \text{GeV} \rightarrow 180 \text{GeV}$ ٠
- Lower emittance new lattice •

		tt	H	W	Z	7
Beam energy	GeV		•	20		
Bunch number Injection		37	240	1230	3840	5760
Threshold of single bunch current	μA	7.18	4.58		3.8	
Threshold of beam current (limited by coupled bunch instability)	mA			27		
Bunch charge	nC	1.07	0.78	0.81	0.89	0.92
Single bunch current	μA	3.2	2.3	2.4	2.7	2.78
Beam current	mA	0.12	0.56	2.99	10.3	16.0
Energy spread	%	0.016				
Synchrotron radiation loss/turn	MeV			1.3		
Momentum compaction factor	10-5	1.12				
Emittance	nm		C	.035		
Natural chromaticity	H/V		-37	2/-269		
RF voltage	MV	438.0	197.1		122.4	
Betatron tune v_x/v_y			321.2	3/117.18		
Longitudinal tune		0.13	0.087		0.069	
RF energy acceptance	%	5.4	3.6 2.8			
Damping time	S	10.4				
Bunch length of linac beam	mm	0.5				
Energy spread of linac beam	%			0.16		
Emittance of linac beam	nm			10		

Extraction		tt H		<i>W</i>	▲	2	
Extraction		Off axis injection	Off axis injection	On axis injection	Off axis injection	Off axis	injection
Beam energy	GeV	180	1	20	80	45	5.5
Bunch number		37	240	233+7	1230	3840	5760
Maximum bunch charge	nC	0.96	0.7	23.2	0.73	0.8	0.83
Maximum single bunch current	μΑ	2.9	2.1	69.7	2.2	2.4	2.5
Threshold of single bunch current	μΑ	95	7	'9			
Threshold of beam current (limited by RF system)	mA	0.3		1	4	10	16
Beam current	mA	0.11	0.51	0.99	2.69	9.2	14.4
Bunches per pulse of Linac		1		1	1	2	2
Time for ramping up	s	7.3	4	.5	2.7	1.6	
Injection duration for top-up (Both beams)	s	30.0	23.3	32.8	39.3	134.7	128.2
Injection interval for top-up	s	65	3	8	155	153.5	
Current decay during injection interval					3%	•	
Energy spread	%	0.15	0.0)99	0.066	0.0)37
Synchrotron radiation loss/turn	GeV	8.45	1.	69	0.33	0.0)34
Momentum compaction factor	10-5				1.12		
Emittance	nm	2.83	1.	26	0.56	0.	19
Natural chromaticity	H/V		•	-37	2/-269		
Betatron tune v_x/v_y		321.27/117.19					
RF voltage	GV	9.3	2.	05	0.59	0.2	284
Longitudinal tune		0.13	0.0)87	0.069	0.0	69
RF energy acceptance	%	1.34	1.	31	1.6	2	.6
Damping time	ms	14.2	47	7.6	160.8	879	

2.0

0.16

0.14

2.0

0.1

mm

h

1.7

0.27

0.96

0.8

1.8

H

Ħ

W

*Diameter of beam pipe is 55mm for instability estimation.

D. Wang

Ζ

Natural bunch length

Full injection from empty ring

CEPC Booster TDR Optics and DA with Errors

- TME like structure (cell length=80m)
- Overall idea: uniform distribution for the Q
- Combined magnet (B+S) scheme possible
- Interleave sextupole scheme
- Emittance@120GeV=1.26nm

		Dipole	Quadrupol e	Sextupole
Transverse (µm)	shift X/Y	100	100	-
Longitudin	al shift Z (µm)	100	150	-
Tilt about >	(/Y (mrad)	0.2	0.2	-
Tilt about Z	(mrad)	0.1	0.2	-
Nominal fie	eld	1e-3	2e-4	3e-4
	Accuracy (m)	Tilt (mrad <u>)</u>	Gain	Offset w/ BBA(mm)
BPM(10H z)	1e-7	10	5%	30e-3

- Orbit correction (COD)(100 Seeds)
 - Response matrix method(RM)
 - SVD method

Optics correction(96 Seeds) (1/8 quadrupoles)

- Response matrix method
- LOCO code
- Dispersion corrected

D. Wang, D.H. Ji, C. H. Yu, Y. M. Peng..

Booster DA design goal

Booster TME lattice DA with errors satisfies the design goal

CEPC 20GeV Linac for TDR

• EBTL is in vertical plane with 1.2 m separation

J.R. Zhang, C. Meng

- Avoid interference with energy analyzing station, transport lines between the Linac and damping ring, waveguide and positron source
- Reduce the tunnel width
- Accelerating structure
 - S-band: FAS/PSPAS/SAS
 - C-band: TAS

CEPC 20GeV Linac Parameters

• Baseline scheme

- 20 GeV
 - Low magnetic field & large magnetic field range
 - C-band
 - Higher gradient \rightarrow Shorter linac tunnel length
 - Small aperture & Strong wakefield
- 10 nm
 - High luminosity
- 100 Hz
 - Injection efficiency
 - High luminosity Z need faster injection process
 - 200 Hz
 - 100 Hz & two-bunch-per-pulse
 - 200 Hz & two-bunch-per-pulse (?)

	C. Meng				
Parameter	Symbol	Unit	Baseline		
e⁻ /e⁺ beam energy	E_{e}/E_{e^+}	GeV	20		
Repetition rate	f _{rep}	Hz	100		
a lat hunch population	Ne-/Ne+	×10 ¹⁰	0.94(1.88)		
e le bunch population		nC	1.5 (3)		
Energy spread (e [_] /e ⁺)	$\sigma_{\scriptscriptstyle E}$		1.5×10 ⁻³		
Emittance (e [_] /e ⁺)	$\mathcal{E}_{x,y}$	nm	10		

Parameter	Unit	S- band	C-band
Frequency	MHz	2860	5720
Length	m	3.1	1.8
Cavity mode		2π/3	3π/4
Aperture diameter	mm	20~24	11.8~16
Gradient	MV/m	21	45

J.R. Zhang

CEPC 20GeV Electron Linac Design

• Electron Linac

- 2.5nm@20GeV (W/o errors)
- Electron linac emittance growth is less than in positron linac

Parameter	Unit	Baseline	Electron
e [_] /e ⁺ beam energy	GeV	20	20.38
Repetition rate	Hz	100	100
e ⁻ /e ⁺ bunch	×10 ¹⁰	0.94(1.88)	1.88
population	nC	1.5 (3)	3
Energy spread (e ⁻ /e ⁺)		1.5×10 ⁻³	1.3×10 ⁻³
Emittance _{x,y} (e [_] /e ⁺)	nm	10	2.5

6

4

dT (ps)

Distribution @ 20GeV

8 10

20.30

20.25

20.20

-2 0

8 10

6

J.R. Zhang

C. Meng

CEPC 20GeV Positron Linac Design J.R. Zhang ,

• Positron Linac

- 5.9nm@20GeV (w erros)
- Goal 10nm@20GeV

Energy/bunch length/energy spread

CEPC linac injector reached design goals taking into account of errors

%

μm

0.1

30

Magnetic

error

BPM

element field

uncertainty

CEPC TDR Damping Ring Design

2021-11-1 J. Gao

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

D. Wang

Total Impedance Budget @3mm@High Z

N. Wang, Y.D. Liu

Components	Number	$Z_{ }/n$, m Ω	k _{loss} , V/pC	ky, kV/pC/m	
					No apparent showstoppers for ttbar, Higgs, W
Resistive wall	-	6.2	363.7	11.3	Main constraints for High-lumi Z include:
RF cavities	240	-1.0	225.2	0.3	 Longitudinal impedance will induce bunch lengthening and beam energy spread
Flanges	20000	2.8	19.8	2.8	increase, as well as reduce the stable
BPMs	1450	0.12	13.1	0.3	 TMCI is OK considering bunch lengthening
Bellows	12000	2.2	65.8	2.9	induced by longitudinal impedance.
Pumping ports	5000	0.02	0.4	0.6	 Transverse resistive wall instability needs an efficient feedback damping time of ~3 turns
IP chambers	2	0.02	6.7	1.3	 Ecloud needs an SEY of less than 1.2 or
Electro- separators	22	0.2	41.2	0.2	 adding antechambers. Emittance growth due to the beam ion effect are foreseen → feedback system is
Taper transitions	164	0.8	50.9	0.5	 CBI due to HOMs needs to be further
Total		11.4	786.8	20.2	checked.

2021-11-1 J. Gao

CEPC Booster Ramping

Dou Wang, Xiaohao Cui

Requirements of CEPC Accelerator Timing and Controle System

- Choose 130MHz as clock beat \rightarrow minimum time separation=7.69ns
- (FPGA clock &EVG/EVR transmission can be realized)
- Circumference of damping ring: (L*1000*10⁹/(3*10⁸))/(1000/650)=integer
- Length of transfer line between DR and Linac: ((N*150+75+104*2-8.3) 10⁹/(3*10⁸))/(1000/2860)=integer 104m →101.65m
- Circumference of collider/booster: (L*1000*10⁹/(3*10⁸))/(1000/650)=integer
- Length of transfer line between booster and collider: (L*10⁹/(3*10⁸))/(1000/650)=integer 252m or 246m

Gang Li, Ge Lei, X.H. Cui, D. Wang

T.M. Xin

L-Band RF Gun electron source is under study

	Common frequency	Bunch separation	Luminosity @Z	Filling flexibility	Remark
1. Keep current Linac	13MHz	38.46ns	58%	No	
2. Cancel SHBs, use RF gun	130MHz	23.07ns	100%	No	
3. <i>f</i> (Linac):2860→2600MHz	130MHz	23.07ns	100%	No	
4. Cancel SHBs, use RF gun + uneven filling	130MHz	7.69ns,15.38ns,23.0 7ns	100%	Yes	Upgradable to 50MW
5. New frequency for Linac and rings (hope)		20.00ns,21.54ns,23. 07ns,24.62ns,26.15n s, 27.69ns	100%	Yes	

CEPC SRF Cryogenic Systems in TDR

R. Ge

The length of SRF cyogenic tansfer lines is 2240m in CDR

The length of SRF cyogenic tansfer lines has been reduce from 2240m in CDR to 744m in TDR

The length of SRF cyogenic tansfer lines is 744m in TDR

CEPC MDI Study Progresses

S. Bai, H.J. Shi

CEPC MDI Study Issues

H.J. Wang

with multipole errors and beam-

beam effects reduced 20%.4

collimators per IP per ring

Study issues (1):

- SC magnet support system
- Remote vacuum connector
- Collimators for background decreasing
- Beam loss failure
- Preliminary design on machine protection

Study issues (2):

- SR from last bending magnet upstream of IP
- Beam loss backgrounds
- Shielding
- Full Detector Simulations

CEPC MDI Q1a SC Magnet Optimization Design

Focused on reducing the magnet weight of Q1a.

• Paths:

1 Relax the dipole field requirement of crosstalk (<30Gs)

2 Use special iron material (FeCoV)

Q1a baseline design: Two layer coils, Weight: 78.9Kg (55% of original value 143.6kg), cross talk <30Gauss, field gradient: 141T/m.

Q1a alternative design: One layer coil,Weight: 60.2Kg (42% of original value), cross talk <30Gauss, field gradient: 141T/m.

R&D plan:

First step, develop a 0.5m short single aperture SC quadrupole model

(LTS NbTi, 136T/m) (started since 2020)

Second step, 0.5m double aperture SC quadrupole magnet

Third step, 1.2m double aperture SC quadrupole magnet

Y.S. Zhu

BH curve of DT4 and FeCoV

Iron yoke material: FeCoV; radius of the iron: 40.5mm

The 2021 Workshop on CEPC Detector & MDI Mechanical Design

(Oct. 22-23, 2021, IHEP/Donguan)

https://indico.ihep.ac.cn/event/14392/other-view?view=standard

Since the CEPC MDI workshop in August, 2020, there has been many important progresses which are reflected by the 20 talks

CEPC MDI Subsystem and Task Forces

H.Y. Shi, S. Bai

MDIAccelerator	Person	
IP Feedback	J.H. Yue/C.H. Yu/Y.W. Wang	J
BG Simulation	H.Y. Shi/S. Bai	
LumiCal	Suen Hou/Ivanka/Phillipe	
HOM absorber	Y.D. Liu/J.Y. Zhai	
Vacuum Chamber	H.J. Wang	
SR Masks	H.Y. Shi	
QD0/QF1	Y.S. Zhu	
Anti-Solenoid	Y.S. Zhu	
Cryostats	M.F. Xu/T.X. Zhao	1 AV
BPMs	Y.F. Sui	an to
Instability&Impendance	Y.D. Liu/N. Wang	nee.
Cooling	Q. Ji/H.J. Wang	251
Shielding	H.Y. Shi/Z.J. Ma/S. Bai	
Assembly&Supporting	H.J. Wang/Q. Ji	
Alignment	X.L. Wang/Q	
Connecting System	H.J. Wang	
Vacuum pumps	Y.S. MO	
Last Bending Magnet	ang	
Collimators Gao	V Jai/H.J. Wang	7th CEPC IAC Meeting
Control	G. Li	

MDIDetector	Person
Central Beam Pipe	Q. Ji
Vertex Detector	Z.J. Liang
LumiCal	Suen Hou/Ivanka/Phillipe
Silicon Tracker	H. Fox
TPC	H.R. Qi
Hcal	Y. Liu
dn.	Y. Liu
Slenoid	F.P. Ning
Yoke	F.P. Ning
Muon Detector	X.L. Wang
Hall	Z.A. Zhu
BG Simulation&Shielding	H.Y. Shi
Software Geometry	C.D. Fu
Alignment&Assembly	Q. Ji/H.J. Wang/X.L. Wang
Electronics	W. Wei
Cryogenic	T.X. Zhao
Radiation Protection/dumps	Z.J. Ma
Collider ring/Booster	Y.W. Wang/D. Wang

CEPC IR Sextupoles and Cryogenic System

Y.S. Zhu

Schematic layout of QD0, QF1, and anti-solenoid

- The requirement for IR sextupole magnets is updated.
- The magnet bore and pole field is reduced.
- Conventional sextupole magnet technology can be used (FeCoV pole). Max strength 3886T/m² is achieved with bore aperture 42 mm. Max current < 200A.

IR sextupoles have been changed from SC magnets to normal conducting ones and cryogenic system for sextupoles can be eliminated.

CEPC Accelerator Control System

Overall hardware architecture of the control system

Potential challenges

- Data rate/traffic in the network(low latency switch)
- Travel time/response time(between GUI and IOCs/controlled devices)
- Faulty recovery(Distance between stations: dozens of km)
- Database and Management of the control system

Global control

- Control Platform
- Center Control System: computers, servers, database, etc
- Network System
- **Timing System**
- Post Mortem System
- Machine Protection System
- Video system

Local control

- Power Supply Control System
- Vacuum Control System
- **Temperature Monitoring System**
- Linac Control System

Integration of subsystems

LLRF, Cryogenic system, Injection/Extraction system etc.

Interface to other system

Detector, beamline and conventional facility

International collaborations are welcome

CEPC Radiological Impact Study

G.Y. Tang

In collider ring tunnel,

radiation caused by

synchrotron is more

serious than random

beam loss

1e+01

1e+00

1e-01 🗐 1e-02 9

1e-03 🖻 1e-04 മ

Impact factors	Characteristics	400
Synchrotron radiation F	Radiation damage to magnet coil; Over heat load to ventilation system; Formation of ozone and nitrogen oxides in the air; Slightly activation to the material around;	300 E ²⁰⁰ → 100
Random beam loss	Cause secondary radiation inside the tunnel; Determine the bulk shielding thickness;	0 -100 -200 -100 0 100 200 300 400 500
Hot spots	Collimation locations, collider/linac dumps, injection/extraction points;	Prompt radiation dose caused by random beam loss
Radiological impact on environment Ra	Dose from stray radiation emitted during machine running Radionuclides in the cooling water, underground water, tunnel air, soil. adioactivity analysis for the solid components and waste	$ \begin{array}{c} 400 \\ 300 \\ \hline E200 \\ \hline \\ 100 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 1e+06 \\ \hline E200 \\ 1e+02 \\ \hline \\ 1e-02 \\ \hline \\ e \\ 1e-06 \\ \end{array} $

The radiation data base is establishing for radiation protection and environment assesment

-200 -100

0

100

X/cm

200

Prompt radiation dose caused by

synchrotron radiation

300

400

500

Preliminary Studies on CEPC Ground Motion

• Ground motion will increase cause beam orbit variation and also beam emittance

Ground vibration transmission to colliding beams

CEPC colliding beam orbit variation due to ground motion

s (km)

Ground vibration in different sites, LHC site is a good reference~3nm

CEPC Plasma Accelerator Injector (alternative) W. Lu, D.Z. Li

Bunch energy spread1% to 0.1%, exp at Tsinghua U.

PHYSICAL REVIEW LETTERS 127, 174801 (2021)

Editors' Suggestion

Positron acceleration scheme made progress

High Efficiency Uniform Wakefield Acceleration of a Positron Beam Using Stable Asymmetric Mode in a Hollow Channel Plasma

Shiyu Zhou,¹ Jianfei Hua¹,¹ Weiming An,² Warren B. Mori,³ Chan Joshi,³ Jie Gao,⁵ and Wei Lu^{1,4,*} ¹Department of Engineering Physics, Tsinghua University, Beijing 100084, China ²Beijing Normal University, Beijing 100875, China ³University of California Los Angeles, Los Angeles, California 90095, USA ⁴Beijing Academy of Quantum Information Sciences, Beijing 100193, China ⁵Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Dazhang Li, CPS, September 2019

HTR e- acceleration

Start-to-end simulation performed, CPI requirement to linac updated
W it hout extra damping mechanism, the growth of hosing instability from statistical noise is acceptable when transformer ratio is 1-1.5

•There are other powerful damping mechanisms. HTR is still possible

e+ acceleration

Asymmetry beam scheme is well accepted by PRL editor
Experiments Plasma dechirper experiment got good results, energy spread from 1% to 0.1%
Experiment on SXFEL is still ongoing. Dedicated TF for PWFA is crucial and under consideration

2021-11-1 J. Gao

CEPC Accelerator System Key Hardware R&D Progresses in TDR

CEPC SRF Facilities and Componets

J.Y. Zhai, P. Sha

IHEP PAPS established in July 2021

Horizontal test stand, 1.3GHz 9cell cavities, and couplers...

CEPC 650 MHz 1-cell Cavity

The 650Mhz 1-cell cavity's results (3.9E10@30MV/m, 1.5E10@37.5MV/m) have broken China's gradient record of low-frequency (<1 GHz) elliptical cavities. **World record Q** of 650 MHz cavity above 30 MV/m.

1.3 GHz High Q Mid-T Cavity Horizontal Test

CEPC 650 MHz Test Cryomodule with Beam/ 1.3GHz High Q Cryomodule (8X9cell)

- Cavity string and module assembly in March to May 2021.
- Modul installation in beamline, 2 K cool down test and RT coupler conditioning in May to July. Horizontal and beam test soon.
- IR laser output to 116 W. Photocathode QE to 5 %. DC gun vacuum to 1.5E-10 Pa, voltage to 350 kV. Buncher cavity high power tested.
- 1.3 GHz 8x9-cell high Q cryomodule prototype
- Component fabrication in 2021 to mid 2022
- Assemble and horizontal test in 2022
- Ship to Dalian in 2023

JY Zhai

CEPC 650MHz High Efficiency Klystrons

Efficiency impact on operation cost (Only considering operation efficiency of 650MHz klystrons)

Z.S.Zhou

CEPC 650MHz High Efficiency Klystrons (2nd and 3rd)

Z.S.Zhou

Klystron No. 3 Efficiency 80.5% (2022)

CEPC Full Size Booster Dipole Magnets

W. Kang

Works for 10GeV injection energy

Two types of 5m long full size booster dipoles prototypes in progress

CEPC Collider Ring Magnets

M. Yang

Full size dural aperture dipole **Model experiment** verification: Axis shift problem solved Dural aperture F/D qudrupole in design 350mm design with trim coils 2021-11-1 J. Gao 7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

• Modification of the dual aperture quadrupole magnet

Sextupole design

Lead

CEPC QD0 SC Magnet R&D (0.5m short model)

Y.S. Zhu

Magnet name	0.5m QD0 model magnet
Field gradient (T/m)	136
Magnetic length (m)	0.5
Coil turns per pole	21
Excitation current (A)	2070
Coil layers	2
Conductor	Rutherford Cable, width 3 mm, mid thickness 0.93 mm, keystone angle 1.9 deg, Cu:Sc=1.3, 12 strands
Stored energy (KJ)	2.6
(Single aperture)	
Inductance (H)	0.001
Peak field in coil (T)	3.4
Coil inner diameter (mm)	40
Coil outer diameter (mm)	53
Yoke outer diameter (mm)	108
X direction Lorentz force/octant (kN)	24.6
Y direction Lorentz force/octant (kN)	-23.7
Net weight (kg)	25

Fabrication of NbTi Rutherford cable is finished (12 strands). SC quadrupole coil winding machine, coil heating and curing system has been finished.

Fabrication of QD0 short model magnet is in progress

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

CEPC Electrostatic-Magnetic Deflector

B. Chen

- The Electrostatic-Magnetic Deflector is a device consisting of perpendicular electric and magnetic fields.
- One set of Electrostatic-Magnetic Deflectors including 8 units, total 32 units will be need for CEPC.

CEPC Vacuum System R&D

Y.S. Ma

New round pipe of Copper (3mm) with NEG coating (200nm) for collider ring in TDR SEY<1.2

All metal gate valve different from VTA

Vacuum pipes and RF shielding bellows

Facility of pumping speed test have been finished in Dongguan

Pumping speed test of 2 meters long CEPC Cu pipe of NEG coating in IHEP

2021-11-1 J. Gao

7th CEPC IAC Meeting, Nov. 1, 2021, IHEP

CEPC Injector Hardwares' R&D

J.R. Zhang

S- band high power test bench and CEPC S band structure E=33 MV/m reached

IHEP S band SLED : Pulse length 4uS→0.8uS

Positron flux concentrator ulsed magnetic field of 6.2 T reached

IDamping ring 650MHz RF cavity design

IHEP C band acc. structure V1: E=40MV/m, V2: E=45MV/m

IHEP C band SLED C band klystron design is starting

Shanghai SXFEL C band linac, Emax=41.7 MV/m

CEPC Main Types of Inj.&Ext. Hardwares J.H. Chen

- One team is in charge of both HEPS and CEPC inj. & ext. system
- Some hardware R&D are overlapping

	Sub-system	Kicker Type	Kicker waveform	Septa Type	Thickness of septum
1	Damping ring inj./ext.	Slotted-pipe kicker	Half-sine/250ns	Horizontal LMS	ф22/3.5mm
2	Booster LE inj.	Strip-line kicker	Half-sine/50ns	Horizontal LMS	ф55/5.5mm
3	Booster ext. for CR off-axis inj.	Delay-line dipole kicker	Trapezoid /440- 2420ns	Vertical LMS	Ф55/6mm
4	Collider off-axis inj.	Delay-line NLK kicker	Trapezoid /440- 2420ns	Vertical LMS	Φ75x56/2mm
5	Booster ext. for CR on-axis inj.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Φ55/6mm
6	Booster HE inj.	NLK or Pulsed sextupole	Half-sine/0.333ms Vertical LMS		Ф55/6mm
7	Collider swap out inj.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Φ75x56/6mm
8	Collider swap out ext.	Ferrite core dipole kicker	Half-sine/1360ns	Vertical LMS	Φ75x56/6mm
9	Collider beam dump	Delay-line dipole kicker	Trapezoid /440- 2420ns	Vertical LMS	Φ75x56/6mm
10	RF region beam separating	Delay-line dipole kicker	CW square / 165us,50%	Horizontal Copper septa	Φ75x56/10mm

CEPC Inj.&Ext. Hardwares' R&D

J.H. Chen

Slotted-pipe kicker

250ns-fast kicker pulser

Delay-line dipole kicker

Status of CEPC Beam instrumentation R&D Y.F. Sui

System	R	&D Work support	ed by	Work to be done	
	BEPCII	HEPS/HEPS TF	Funding		
BPM electronics	\checkmark	\checkmark	\checkmark	Radiation hardness Industrialization	
Beam position monitor fabrication				detection;	
Longitudinal feedback system	\checkmark	V Jak	A DE		
Transverse feedback system	\checkmark				
Synchrotron radiation monitor				X-ray interfere Gas jet scann	
BI at the interaction point			\checkmark	Special beam	
Bunch current monitor				BBB electronics R&D based home- developed and company	
Beam loss monitor 2021-11-1 J. Gao	A		√ g, Nov. 1, 2021, IHEP	beam loss detector R&D ; Industrialization	

New Alignment Vision Instrument R&D X.L. Wang

The new vision instrument can increase the efficiency by 4 times

A new kind measurement instrument with three fuctions:

- 1) photogrammetry, 2) distance, 3) angle measurement functions
- Objective: high precision, high efficiency

camera vertical dial plate horizontal dial plate

The completed vision instrument

Application test in RCS ring of CSNS measurement

Five-face target R&D

CEPC 18kW@4.5K Cryogenic Plant R&D

M. Li

CEPC Siting, Civil Engineering, Alignment and Installation Strategies

2019.12月8-11 and 2020.1.8-10 Chuangchun sitings update

CEPC Siting Status Three companies are working 5 on siting and issues Xinjiang Inner Mongolia In 2021, Changsha site Shanxi Henan Shaanxi

has some progress with local government starting a review process

2020.9.14-18 Qinhuangdao updated

2019.12.16-17 Huzhou siting update

2019.08.19-20 Changsha siting update

- 1) Qinhuangdao, Hebei Province (Completed in 2014)
- 2) Huangling, Shanxi Province (Completed in 2017)

Heilongjiang

Hube

Hunan

Guangxi Guangdone

Jiangxi

- 3) Shenshan, Guangdong Province(Completed in 2016)
- 4) Huzhou, Zhejiang Province (Started in March 2018)
- 5) Chuangchun, Jilin Province (Started in May 2018)
- 6) Changsha, Hunan Province (Started in Dec. 2018)

CEPC Siting and Civil Enegineering Progress

The work that has been done is as follows

- CEPC report on site selection (Zhejiang Huzhou) Answer the questions-Why did CEPC choose huzhou
- CEPC report on socio-economic assessment Answer the questions-Why did huzhou choose CEPC
- CEPC Technology Design Report on Civil engineering of the first stage
- CEPC report on science city concept plan Find a comfortable home for scientists

IP4

CEPC Auxiliary Facilities

Electric power demand Total: 270.37MW

Heating Ventilation Air Conditioning System

						Estimated cooling loads of HVAC	🛿 Indoor Design Parameters	Y. Xiao	LSS1
	Sautom for II.		Location an	d Power R	lequiren	∞ Lonnel: 6MW	∞Tunnel		B
	(30 MW /beam)	Collider	Booster	Linac	BTL	∞ Service buildings: (200W/m ²) 28MW Total: 34MW	№ Temperature: within 30-34°C and 35°C Inlet: 18~20°C	shall be kept belov	V B
1	RF Power Source	103.8	0.15	5.8		 Coolant for air conditioning: chilled wate Heat source for heating system in winter 	 r Outlet: less than 35°C ∞ Relative humidity: 50% ~ 60%, ar than 65% 	d shall be lower	'Z
2	Cryogenic System	15.67	0 80			So Heat pump heat recover from cooling	∞Experimental halls emperature: about 26°C(summe elative humidity: 50% n 60% ar	r), 20℃(winter) d shall be lower	bstation 19·
Cooling Wat So Total heat load : 212.186MW The heat load of 190.915MW dissipated by CEPC machin The heat load of 21.945MW dissipated by the motors of So Total flow rate of LCW: 30157 m³/h So Total flow rate of CTW: 40092 m³/h So Cooling water temperature Cooling tower water temperature: < 29°C (Base on wet-bulb air temperature: < 29°C (Base on wet-bulb air temperature: < 29°C So DW : Single DW unit can produce 3~5t/h deionized wa following standards. Resistivity reach 16 MQ*cm		 Reduce po Auxiliary fac Minimize th Electric pow and variable fi Adopting hi increase of wat Thermal en Through heat sources. Air condition Heating sou 	Energy Saving Consideration (Green CEPC) Y. Xiao power consumption facility should be built near to the heat load center. e the operating pressure. Nower consumption of auxiliary facility reaches 38.53 MW. Using high efficiency motor le frequency motor will help to reduce energy consumption. g high temperature chiller, the cooling efficiency will increase by 2~3% for every 1°C water outlet temperature. I energy recovery heat recovery chiller, heat exchanger maximizes the heat absorbed by LCW as several heat itioning heat source			Xiao ntrol room (or electronic emperature: about 20-25°C .elative humidity: 45% ~ 60% ner service building emperature: about 28°C(summe .elative humidity: lower than 65% 1. IHEP	nan 65%. ntrol room (or electronics) emperature: about 20-25℃ elative humidity: 45% ~ 60% ner service building emperature: about 28℃(summer), 18℃(winter), elative humidity: lower than 65% 1, IHEP 57		
द्व इ. 2021-11-1	b Water consumption : 14011m³/d (b Storage capacity of low-level radio m⊥Geo 70 CE	1.5% CTW) active wastewa	2021-11-01 J. Geo	ources	789 (CEPC IAC Meeting, Nov. 1, 2021, IHEP	I3 Circuit 8 Circuit 8 Circuit 8 Circuit 8 Circuit III IIII IIII IIII IIII IIIII	uit 8 Circuit 8 Circuit 13	Circuit 13 Circuit

Y. Xiao

IP1

LSS4

Civil Construction and Machine Installations

Huzhou site example

CEPC Installation and Alignment Strategies

One section installation scheme

- CEPC civil construction will be divided into two phases, so the installation will follow it and incluc two phases
- In each phase the installation will be divided into four sections to be carried out in parallel
- 3 levels control network will be build to provide an unified location reference frame for CEPC alignment and control the error accumulation
- Component quantities : 41563
- In the peak time, it will need 64 alignment groups and 56 installation groups
- Installation efficiency of each day has been estimated and the installation schedule has been made. According to the plan, the total installation time is 3 years and 8 months (44 months)

CEPC Tunnel Mockup Design

H.J. Wang

CEPC Component Stores for Installation Optimization

J.B. Wang

CEPC Accelerator Installation and Alignment

Component	Transvers al/mm	Vertica I/mm	Longitudin al/mm	Pitch /mrad	Yaw /mrad	Roll /mrad
Arc Dipole	0.1	0.1	0.1	0.1	0.1	0.1
Arc Quadrupole	0.1	0.1	0.1	0.1	0.1	0.1
Arc Sextupole	0.1	0.1	0.1	0.1	0.1	0.1
IR Quadrupole	0.05	0.05	0.05	0.05	0.05	0.05
IR SCQ	0.05	0.05	0.05	0.05	0.05	0.05
IR Sextupole	0.05	0.05	0.05	0.05	0.05	0.05

Workload of CEPC alignment

- Tunnel length 109.55km : 100.034km main ring + 6.64kmIR booster tunnel + 1.21km Linac + 0.06km DR+ 1.07km BT + 2X0.268km BT
- Component quantities : 41563 ~ 52155
- ➢ Use laser tracker 18259 X2=36518 stations.

CEPC Accelerator Mechanical Supports and Installation Tools H.J. Wang

- Adjustment Ranges of magnets TUNNEL CROSS SECTION OF THE ARC AREA Flexible load support for X ≥±20 mm Δθx ≥±10 mrad Outside of the ring Inside of the ring. "long" devices and Y ≥±30 mm Δθγ $\geq \pm 10 \text{ mrad}$ "short" devices Booster ≥±10 mrad Ζ ≥±20 mm Δθz Transportation and coarse location of magnets in Booster Collider Transportation and coarse location of magnets in Collider * Cooperate with Beijing North Vehicle Group Corporation.
- Over 80% of the length is covered by magnets of about 138 types.

CEPC CIPC and International Collaborations

CEPC-CIPC Collaboration (part of CIPC members' logo)

International Meetings and Collaborations

- The 2021 International Workshop on the High Energy Circular Electron-Positron Collider (CEPC) will take place from November 8-12, 2021 (https://indico.ihep.ac.cn/event/14938/)(Online only)
- 2022 HKUST IAS Mini Workshop on Accelerator, "Key beam physics and technologies issues for
- 2022 HKUST IASHEP Conference (without parallel sessions), Jan 17

CEPC submissions to Snowmass21

Executive summary

CEPC Input to the ESPP 2018

-Accelerator

CEPC Accelerator Study Group

Executive summary

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) in July 2012 raised new opportunities for a large-scale accelerator. Due to the low mass of the Higgs, it is possible to produce it in the relatively clean environment of a circular electron-positron collider with reasonable luminosity, technology, cost and power consumption. The Higgs boson is a crucial cornerstone of the Standard Model (SM). It is at the center of some of its biggest mysteries, such as the large hierarchy between the weak scale and the Planck scale, the nature of the electroweak phase transition, and many other related questions. Precise measurements of the properties of the Higgs boson serve as excellent tests of the underlying fundamental physics principles of the SM, and they are instrumental in explorations beyond the SM. In September 2012, Chinese scientists proposed a 240 GeV Circular Electron Positron Collider (CEPC), serving two large detectors for Higgs studies. The tunnel for such a machine could also host a Super Proton Proton Collider (SPPC) to reach energies beyond the LHC

was presented for the first time to the international community at the ICFA Work \checkmark "Accelerators for a Higgs Factory: Linear vs. Circular" (HF2012) in November 2012 at Fermilab A Preliminary Conceptual Design Report (Pre-CDR, the White Report) [1] was published in March 2015, followed by a Progress Report (the Yellow Report) [2] in April 2017, where CEPC accelerator baseline choice was made. The Conceptual Design Report (CEPC Accelerator CDR, the Blue Report) [3]has been completed in July 2018 by hundreds of scientists and engineers after international review from June 28-30, 2018 and formally released on Sept 2, 2018.

CEPC -Accelerator Technologies to Snowmass2021 AF7

CEPC Accelerator Study Group

CEPC LOI to Snowmass21

The discovery of the Higgs boson at CERN's Large Hadron Collider (LHC) nck scale, The Higgs boson is a crucial cornerstor anticipate US South were consumption. ing ing ind the new supervision of the elecontinue to partiand ment the weak scale and the Planck scale, the nature of the elecontinue to cess and many other related questions. Precise measurer will contific pro Higgs boson serve as excellent tests of the underlying ne Accelerator Scientific pro Higgs doson serve as excellent tests of the underlying and the process and they are instrumental in explorations beyond the Accelerator Scientific provides for Higgs for the SM, and they are instrumental in explorations beyond the and part (CEPC), serving two large detectors for Higgs for Higgs for the sector. The CEPC Preliminary Conceptual Design Report (Pre-CDR, the White Report)[1] was published in March 2015, followed by a Progress Report (the Yellow Report)[2] in April 2017, where CEPC accelerator baseline choice was made. The Conceptual Design Report (CEPCAccelerator CDR, the Blue Report) [3] has been publically realsed in Nov. 2018, and also submitted to European High Energy Strategy in May, 2019 [4].

LOI includes SppC and siting

Technologies

Collider Design SCRF **Klystron** Linac+plasma accelerator injector

CEPC Time Plan and Perspective for Accelerator TDR and EDR Plans

Perspective for Accelerator TDR and EDR Plans

• CEPC Accelerator TDR completion time: Dec. 2022

-Consistent TDR high luminosity parameter design as Higgs factory -Key components with prototyping, techincal feasibility demonstrated, no technical show stopper -Design and R&D technical documentation (Data, drawings, etc.) -CEPC accelerator TDR document release in 2023

• CEPC Accelerator EDR Phase Plan: Jan. 2023-Dec. 2025

-CEPC site study converging to one or two with detailed feasibility studies (tunnel and infrastructures, environment)

-Engineering design of CEPC accelerator systems and components towards fabrication in an industrial way

-Site dependent civil engineering design implementation preparation

-EDR document completed for government's approval of starting construction in 2026 (the starting of the "15th five year plan")

-... (CEPC accelerator EDR phase plan needs more discussions)

Summary

- CEPC accelerator system optimization designs based on TDR high luminosity parameters is progressing and converging
- CEPC accelerator system key hardware R&D is progressing with the aim of finishing TDR at the end of 2022
- CEPC siting, civil engeering, auxiliary facilities, installation plan, international and CIPC collaborations are progressing
- More efforts are needed to the TDR completion goal at the end of 2022 and EDR preparation plan between 2023-2025 before the starting of CEPC construction has been birefly discussed

Acknowledgements

- Thanks go to CEPC-SppC accelerator team's hardworks, international and CIPC collaborations
- Special thanks to CEPC SC, IAC and IARC's critical comments, suggestions and encouragement

Backup

CEPC Collider Ring COD Corrections

- A new corrector setting is necessary for the more limited lattice.
- BPMs placed at quadrupoles (~1800, 4 per betatron wave) Horizontal correctors placed beside focusing quadrupoles (~1800)
- Vertical correctors placed beside defocusing quadrupoles (~1800)
- Orbit correction is applied using orbit response matrix and SVD method.

Y.W. Wang B. Wang

The close orbit correction and dispersion correction are finished, the passing rates and the correction effect are comparable to those for CDR lattice.

 $RMS_{COD} < 0.05 mm$

CEPC self-polarization at Z pole

- Self-polarization with wigglers at Z pole :
 - > 10 identical wigglers are inserted in the collider ring to speed up the self-polarization progress;
 - > 5% transverse polarization can be obtained within 1.8 hours

w/o max

-w/omin -w/max -w/min

CEPC Full Detector Simulations

- The full detector simulation on Higgs Mode based on original CDR design & parameter has been performed
 - > 28mm Be beam pipe
- The impact on detector due to bkg could reach EMC or more
- Pair Production contributes most, bth and bgb are at same level, lower than pair production
CEPC MDI Study Status

IP Feedback	Not Covered
BG Simulation	Doing
LumiCal	Doing
HOM absorber	Considering
Vacuum Chamber	Done
SR Masks	Done
QD0/QF1	Doing
Anti-Solenoid	Doing
Cryostats	Doing
BPMs	Doing
Instability&Impendance	Done
Cooling	Done
Shielding	Doing
Assembly&Supporting	Doing
Alignment	Doing
Connecting System	?
Vacuum pumps	Doing
Last Bending Magnet	Done
Collimators	Doing 7th CEPC IAC

Central Beam Pipe	Done
Vertex Detector	Doing
LumiCal	Doing
Silicon Tracker	Doing
TPC	Doing
Hcal	Doing
Ecal	Doing
Solenoid	Doing, strength Fixed
Yoke	Doing
Muon Detector	Doing
Hall	?
BG Simulation&Shielding	Doing
Software Geometry	Done, check needed
Alignment&Assembly	Doing
Electronics	?
Cryogenic	?
Radiation Protection	Not Covered

Detector

2021-11-1 J. Gao

Accelerator

CEPC Project Timeline

