IAC recommendations

João Guimarães da Costa

September 15, 2021

Institute of High Energy Physics Chinese Academy of Sciences

IAC Report - Recommendations

Report:

The Sixth Meeting of the CEPC-SppC International Advisory Committee

November 19, 2020

The IAC committee

Present:	Barry Barish, Caltech									
	Hesheng Chen, IHEP, Chinese Academy of Sciences									
	Michel Davier, LAL									
	Marcel Demarteau, ORNL									
	Brian Foster, DESY/University of Hamburg & Oxford University									
	Rohini Godbole, CHEP, Bangalore									
	David Gross, University of California, Santa Barbara									
	George Hou, Taiwan University									
	Peter Jenni, CERN & Albert-Ludwigs-University Freiburg									
	Young-Kee Kim (Chair), University of Chicago									
	Eugene Levichev, BINP									
	Lucie Linssen, CERN									
	Luciano Maiani, University of Rome									
	Michelangelo Mangano, CERN									
	Tatsuya Nakada, EPFL									
	Katsunobu Oide, CERN & KEK									
	Ian Shipsey, Oxford University									
	Steinar Stapnes, CERN									
	Geoffrey Tayler, University of Melbourne									

Apologies received:

Joe Lykken, Fermilab Hitoshi Murayama, University of California, Berkeley & Kavli IPMU Robert Palmer, BNL John Seeman, SLAC

IAC Report - Recommendations

Introduction/General

Recommendation 1: Update the timeline and include two separate accelerator and detector roadmaps in the timeline by the next IAC meeting. (to happen within | year)

Recommendation 2: Hold the International Accelerator Review Committee and the International Detector R&D Review Committee twice a year in person or virtually. The next meetings should take place within six months.

Action Item: organize a second International Detector R&D Review Committee meeting by May 2021 — virtual meeting and decoupled from a CEPC workshop. Third meeting could be coupled with October 2021 workshop.

First step: Need to finalize support documents

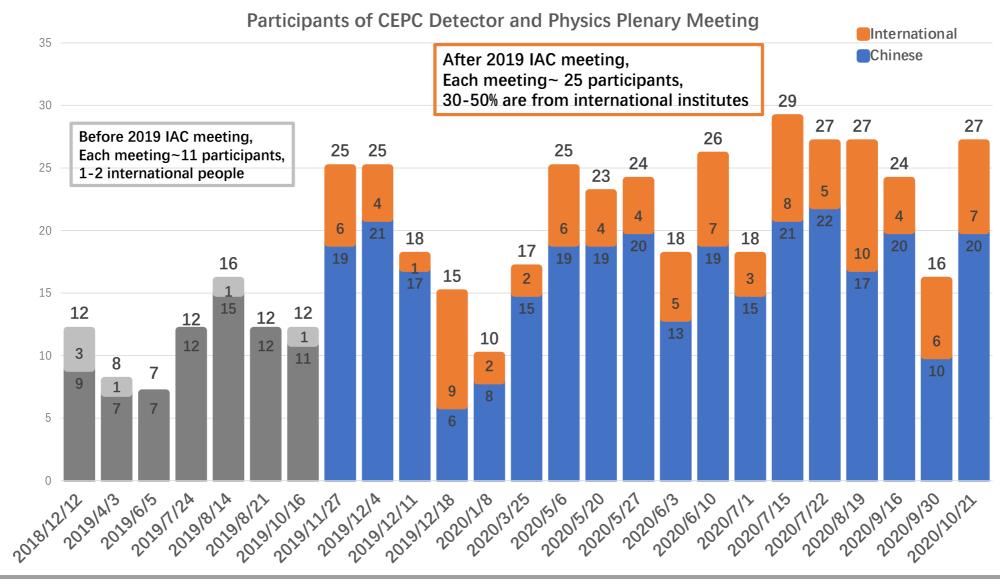
IAC Report - Recommendations

Management

Recommendation 3: Explore a possibility of commissioning an economics department of a prestigious Chinese university to carry out such an <u>economic benefits</u> study. (economic benefits to China from CEPC)

Recommendation 4: Explore the CERN-Chinese relation as much possible. The IAC would like to hear a report on this matter at the next meeting, with an evaluation of the benefits to date, the strengths and weaknesses, and how it might be further improved.

The IAC suggests further enhancement of the CEPC and FCC-ee collaboration, and building international strength though bi-lateral arrangements.


Action Item: expand our relationships with FCC-ee and LHC involvement

IAC Report - Recommendations

Detector R&D and Physics Studies

The IAC congratulates the CEPC team for the significant progress since last year on the detector and physics aspects. Following up on last year's recommendations, the IAC was pleased to see regular meetings taking place within the various topical groups and with significant participation from outside China.

IAC Report - Recommendations

Detector R&D and Physics Studies

The IAC congratulates the CEPC team for the significant progress since last year on the detector and physics aspects. Following up on last year's recommendations, the IAC was pleased to see regular meetings taking place within the various topical groups and with significant participation from outside China.

IAC Report - Recommendations

Detector R&D and Physics Studies

The IAC congratulates the CEPC team for the significant progress since last year on the detector and physics aspects. Following up on last year's recommendations, the IAC was pleased to see regular meetings taking place within the various topical groups and with significant participation from outside China.

https://indico.ihep.ac.cn/category/214/								
Physics and Detector Meetings								
Physics and Simulations	416 events							
Vertex	12 events							
Tracker	128 events							
Calo&Muon	160 events							
MDI	52 events							
General	138 events							
100 TeV Simulation	12 events							
Pure Silicon Detector	8 events							
Offline Software	1 event (
Mechanics	3 events	•						

Action Item:

Organize meetings through the proper indico interface for our group

Create a proper paper trail that can be used for reporting on the progress

IAC Report - Recommendations

Detector R&D and Physics Studies

The IAC noted an increase in the number of sub-detector R&D projects, many of them involving non-Chinese groups. The ongoing effort to create a summary document describing the different detector R&D activities and their current status is recognized. It will be very helpful to maintain overview and to facilitate the integration of external groups. (see next slides)

The active participation of CEPC experts, together with experts from ILC, CLIC and FCC, in the common Key4hep / EDM4hep / DD4hep software infrastructure for detector description, event simulation and event reconstruction is seen as a big step forward since last year.

The purely phenomenological/theoretical work on the CEPC physics potential is in excellent shape, as shown during the Workshop. The worldwide theory community contributes to these studies as part of the global effort to expand the science impact of circular colliders. The CEPC team is a driving force behind these efforts, particularly in the context of Higgs and BSM physics. There are further opportunities, however, to exploit the particular competence of Chinese theorists in areas like flavor, hadronic spectroscopy and higher-order calculations for QCD and EW precision observables.

IDRDC: Preparation for Next Meeting Preparation

17 documents, 95 subtasks, 80 pages

Submitted to committee chair but waiting for feedback

PBS	Task Name	Page	Subtasks	Context	Team	Document Responsible
. 50	CEPC Detector R&D Project		Jubtashs	Context		
1	Vertex					
- 1.1	Vertex Prototype	5	9	CEPC	China+ international collaborators	Zhijun, Ouyang
1.2	ARCADIA CMOS MAPS	6	6	Generic	INFN, Italy	Manuel Rolo
2	Tracker					
2.1	TPC Module and Prototype	6	12	CEPC	IHEP, Tsinghua	Huirong
2.2	Silicon Tracker Prototype	6	8	Generic	China, UK, Italy	Harald Fox, Meng Wang
2.3	Drift Chamber Activities	4	3	FCC-ee/CEPC	INFN, Novosibirsk	Franco Grancagnolo
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	5	6	CEPC	IHEP, Princeton + others	Yong Liu
3.1.2	PFA Sci-ECAL Prototype	3	3	CEPC	USTC, IHEP	Jianbei Liu
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	4	5	CEPC	SJTU, IPNL, Weizmann, IIT, USTC	Haijun Yang, Imad Laktineh, Shikma Bressler
3.2.2	PFA Sci-AHCAL Prototype	4	4	CEPC	USTC, IHEP, SJTU	Jianbei Liu
3.3	Dual-readout Calorimeter	5	5	FCC-ee/CEPC	INFN, Sussex, Zagreb, South Korea	Roberto Ferrari
4	Muon Detector					
4.1	Scintillator-based Muon Detector	4	5	CEPC	Fudan, SJTU	Xiaolong Wang, Liang Li
4.2	Muon and pre-shower µRWELL-	5	4	FCC-ee/CEPC	INFN, LNF	Paolo Giacomelli
5	Solenoid					
5.1	LTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
5.2	HTS solenoid magnet	4	4	CEPC	IHEP+Industry	Zhu Zian
6	MDI					
6.1	LumiCal Prototype	4	2	ILC/CEPC	AC, IHEP	Suen Hou
6.2	Interaction Region Mechanics	3	4	CEPC	IHEP	Hongbo Zhu
8	Software and Computing	7	11	CEPC	IHEP, SDU	Li Weidong, Ruan Manqi, Sun Shengseng, Li Gang

Joao Guimaraes da Costa

IDRDC: Preparation for Next Meeting Preparation

Waiting for feedback

PBS	Task Name	Finish	2020		2021		2022		2023		202	24	2025		2026		2027		2028		2029	
			H1	H2	H1	H2	H1	H2	H1	H2	H1	1 H2	H1	H2	H1	L H2						
	CEPC Detector R&D Project	26/12/31	r								~						- CEF	'C De	tector	R&D	Proje	ct
1	Vertex	23/12/29	r								•	ertex										
1.1	Vertex Prototype	23/12/29										ertex Pr	-	-								
1.2	ARCADIA CMOS MAPS	23/12/29									AR	RCADIA	СМО	S MA	APS							
2	Tracker	24/12/31	r										Tra									
2.1	TPC Module and Prototype	23/12/29									TP	PC Modu	ule an	nd Pro	ototy	ype						
2.2	Silicon Tracker Prototype	23/10/31									Silic	on Trac	ker P	rotot	type							
2.3	Drift Chamber Activities	24/12/31											Drift	t Cha	mbe	er Activ	vities					
3	Calorimetry	24/12/31	r										Calo	orime	etry							
3.1	ECAL Calorimeter	24/12/31	F										ECA	L Cal	lorim	neter						
3.1.1	Crystal Calorimeter	21/12/31					Crys	tal Ca	alorim	eter	•											
3.1.2	PFA Sci-ECAL Prototype	24/12/31											PFA	Sci-E	CAL	Proto	type					
3.2	HCAL Calorimeter	22/12/30	r						1 HCA	L Cal	lorin	neter										
3.2.1	PFA Digital Hadronic Calorimeter	21/12/31					PFA	Digit	al Had	roni	ic Ca	lorimet	er									
3.2.2	PFA Sci-AHCAL Prototype	22/12/30							PFA	Sci-A	AHCA	AL Proto	otype									
3.3	Dual-readout Calorimeter	24/12/31											Dua	l-rea	dout	t Calor	imete	r				
4	Muon Detector	24/12/31											Mu	on D	etec	tor						
4.1	Scintillator-based Muon Detector Prototype	23/12/29									Sci	intillato	or-bas	ed N	luon) Dete	ctor Pi	otot	pe			
4.2	Muon and pre-shower µRWELL-based detector	rs24/12/31											Muc	on ar	nd pr	e-sho	wer µl	RWEL	L-base	d de	tector	'S
5	Solenoid	26/12/31	r														⊐ Sol	enoio	1			
5.1	LTS solenoid magnet	25/12/31													LT:	S sole	noid n	nagne	et			
5.2	HTS solenoid magnet	26/12/31															HTS	sole	noid m	nagne	t	
6	MDI	22/12/30	r						1 MD													
6.1	LumiCal Prototype	20/12/31			Lun	niCal F	Protot	ype														
6.2	Interaction Region Mechanics	22/12/30							Inter	ractio	on R	egion N	/lecha	anics								
8	Software and Computing	20/12/31	r		- Sof	tware	and C	Comp	outing													

IAC Report - Recommendations

Detector R&D and Physics Studies

the overall optimization process for the detector still needs further in-depth studies driven by the various physics objectives. Measurements at the different center-of-mass energies will each add specific, and sometimes competing, requirements.

Continue effort in performant software and detector optimization

Recommendation 11: Not to tighten the R&D towards a predefined tight schedule. The IAC believes that R&D within a technically driven schedule is optimal. Given the longer timescale this allows, it is important to develop the best possible detector design. Innovation and creativity (i.e. new ideas) in the R&D leading to the development of a cutting-edge holistic detector design should be a goal.

Action Item: Rework the CEPC general timeline; Keep open higher risk options that require more R&D; Invest on innovative solutions — highlight these in next report

IAC Report - Recommendations

Detector R&D and Physics Studies

Recommendation 12: Reinforce the engineering efforts related to the detector design. Engineering studies are essential and now timely, for example in the following domains: cooling integration studies for the vertex detector, the beam pipe and the PFA calorimeters; light-weight supports and integration of the vertex detector; scalability of the calorimeters.

Action Item: Ji Quan already acting as project engineer overseeing many of these issues.

Identify more engineers involved at the detector level and ensure that the communication is optimized

Try to get international participation at this level as well

IAC Report - Recommendations

Detector R&D and Physics Studies

Recommendation 13: Assess the CEPC physics potential of the 360 GeV stage in full, including a demonstration that the accelerator design optimally fits the physics objectives at this stage. Even if the 360 GeV stage is still far away in time, it is an important element to the attractiveness of CEPC as a whole. Not emphasizing it strongly in the presentation of the CEPC program may discourage potential partners.

Recommendation 14: Assess the CEPC physics potential for the high luminosity Z factory stage. In particular it is important to fully develop the flavor physics program for this stage, from the perspective of weak interactions (e.g., precision measurements and rare and forbidden decays in the SM and in BSM scenarios), as well as from the perspective of strong interactions (e.g., in the area of exotic hadrons, where unique studies of doubly heavy or fully heavy tetraquarks, also including b quarks, would be possible).

Action Item: Continue to expand the team working on flavor physics and strong interactions

Promote engagement from university physicists

IAC Report - Recommendations

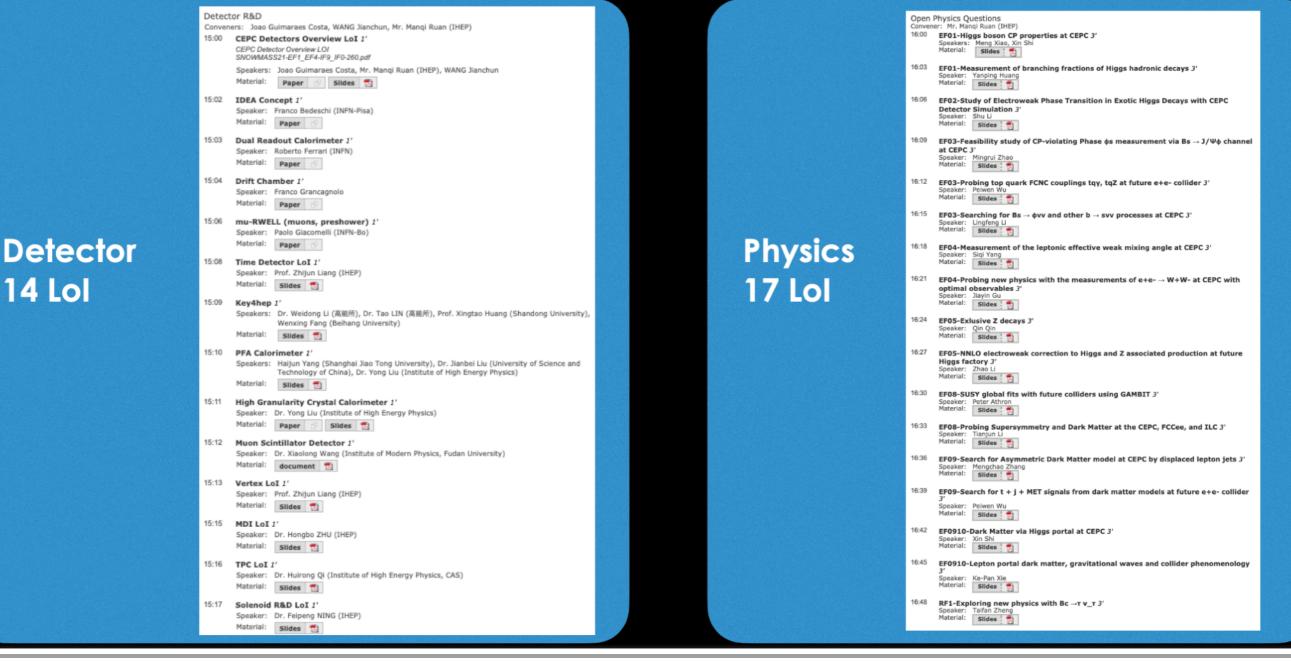
Detector R&D and Physics Studies

Recommendation 15: Further develop close relationships with FCC-ee colleagues in detector designs.

Action Item: IDEA colleagues already involved in both projects, but expand beyond that to include common detector R&D projects. Some of these already starting.

Common workshops/discussions regarding challenges of circular e⁺e⁻ collider physics

3. In light of the new global reality, how should we carry out international collaboration with the CEPC?


The IAC believes it is important to engage more frequently with the experienced scientists that serve on the International Detector R&D Committee. A meeting next Spring, as proposed, is desirable. In future these should be regular meetings perhaps on a cadence of every six months. See Recommendation 1.

Snowmass Letter of Intent

Can be part of our report to the IAC, as a demonstration of international collaboration

