

Fast Simulation for CEPC Tracker Optimization

Yun Youhui, Wei Zhiling, Li Zepeng Fu Chengdong, Wu Linghui Sep.9th,2021

Baseline Design

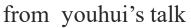
There are 6 VXDs, 4 SITs,1 DC and 1 SET,their parameters are as follows.

[Detector | 1 aver | Padius (mm | Material budget [X0])]

Detector	Layer	Radius(mm	Material budget[X0]	
VXD	1	16	0.15%	
	2	18	0.15%	
	3	37	0.15%	
	4	39	0.15%	
	5	58	0.15%	
	6	60	0.15%	
SIT	1	80	0.65%	
	2	320	0.65%	
	3	560	0.65%	
	4	800	0.65%	
DC	100	800~1800	0.34%	
SET	1	1815	0.65%	

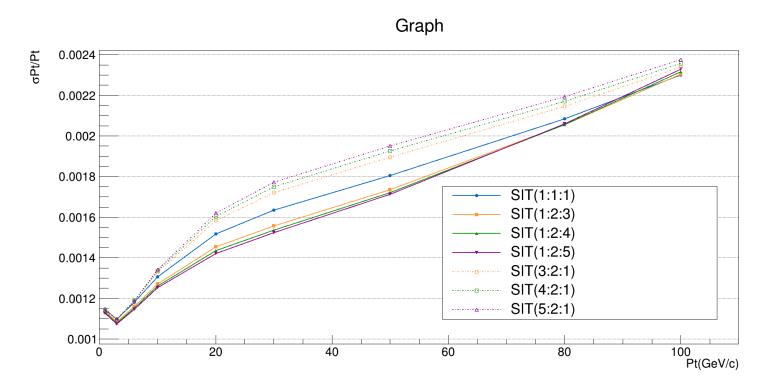
(From youhui's talk)

Optimization

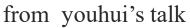

Detector	Layer	Radius(mm)	Material budget[x/X0]		
shell	1	78	0.0015		
SIT	1	80	0.0065		
	2	320	0.0065		
	3	560	0.0065		
	4	800	0.0065		
Inner wall	1	800	0.00104		
DC	100	800-1800	0.000116		
Outer wall	1	1800	0.01346		

- VXDS and SET stay unchanged
- The outer radius of DC stays unchanged

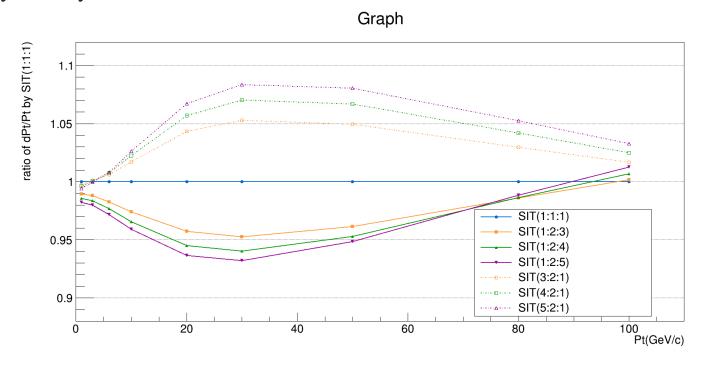
• Change the radius of DC and SITs and the number of DC's layers at the same time



Optimization of SITs layout



- Layers at 80 and 800mm fixed
- Only two layers can move



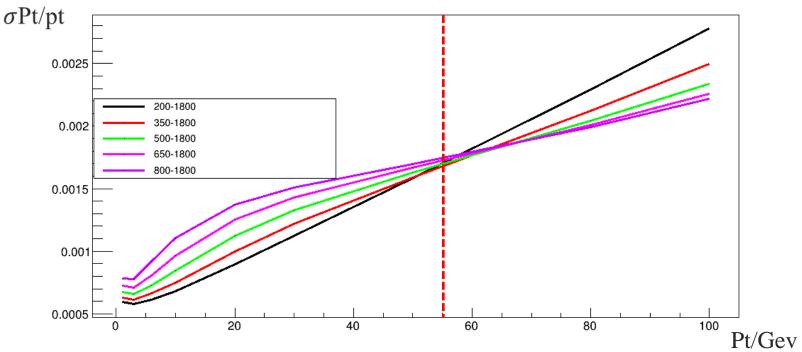
Optimization of SITs layout

- Layers at 80 and 800mm fixed
- Only two layer can move

Consistent with Hao and Cheng's result

Optimization of radius and # of layers

- 10x10 cell, material budget 0.000116
- SIT spacing 1:1:1


Radius of DC	#of layer	Radius of SITs			
200-1800	160	80	120	160	200
350-1800	145	80	170	260	350
500-1800	130	80	220	360	500
650-1800	115	80	270	460	650
800-1800	100	80	320	560	800

Optimization of radius and # of layers

sigmaPt MSON

- Pt below ~55Gev, smaller inner radius makes better resolution
- Pt above ~55Gev, on the contrary

Summary

- SIT layers favor to be near to beamline except the two fixed layers(from Gang's talk)
- At low Pt, smaller inner radius(and more layers) of DC(1:1:1) makes better resolution and at high Pt opposites

THANKS!