Collective flow in Large and small systems

You Zhou

Niels Bohr Institute

THE VELUX FOUNDATIONS

Evolution in the Little Bang

Current status of initial state models

THERE ARE CURRENTLY THREE CATEGORIES OF MODELS.

– "sharp" models: IP-GLASMA and TRENTO 2016 (v-USPhydro)

[Schenke, Shen, Tribedy 2005.14682] [Bass, Bernhard, Moreland 1605.03954]

Nucleons have a width of ~0.5fm (trento), 3 sub-nucleons with size ~0.3fm (IP-Glasma). Trento is used for the entropy density at the beginning of hydro. <u>IP-Glasma is the only</u> model which incorporates a realistic pre-equilibrium evolution with longitudinal cooling.

"fat" models: TRENTo 2019 and JETSCAPE

[Bass, Bernhard, Moreland Nature Phys. 15 (2019)] [JETSCAPE Collaboration 2011.01430, 2010.03928]

The Trento parametrization is now used for the energy density at tau=0+. There is no substructure. The nucleon width is now ~1fm. Very smooth profiles.

– "lumpy fat" models: TRENTo 2018 and Trajectum

[Bass, Bernhard, Moreland 1808.02106] [Nijs, van der Schee, Gürsoy, Snellings 2010.15130, 2010.15134]

The Trento parametrization is the energy density at tau=0+. Substructure is included: 4-6 constituents with width ~0.5fm. Profiles with some 'old school' lumpiness.

Credits: G. Giacalone

UNIVERSITY

COPENHAGEN

How can we access the initial conditions in EXP?

0 4

x (fm)

You Zhou (NBI) @ RHIC-BES seminar

0

x (fm)

Studying QGP with flow

Spatial eccentricity in the initial state converted to momentum anisotropic particle distributions

•known as elliptic flow

J.Y. Ollitrault, PRD 46 (1992) 229

reflect initial eccentricity and transport properties of QGP

Figures by B. Hippolyte

From initial anisotropy to anisotropic flow

How does v_n fluctuate

UNIVERSITY OF

COPENHAGEN

$P(v_n)$ and $P(\varepsilon_n)$

- Investigating $p(v_2)$ with multi-particle cumulants
 - Ultra-higher order cumulants e.g. v_2 {10}{12}{14}{16} is implemented for HL-LHC,
 - Possibility to construct a more precise p.d.f. with higher moments

P(v_n) and ESE

- Using Event-Shape Engineering (ESE) to select high (low) q₂ to get larger (smaller) v₂
- The fluctuation study with ESE reveals that ESE selects not only ε₂ but also its fluctuations, which modifies the p.d.f. (i.e. its skewness)
- One should not compare high 10% q₂ in data to 10% large ε₂ model calculations (common issues in HF studies)

1"P1

UNIVERSITY OF

COPENHAGEN

p_T-differential p.d.f.

Study pT differential p.d.f. of v2 using multi-particle cumulants

• Non-trivial p_T dependence of γ_1 and γ_2

UNIVERSITY

COPENHAGEN

- γ_1 : negative at low p_T and is compatible with 0 at high p_T
- γ_2 : positive for $p_T < 2$ GeV/c and then consistent with 0 within large uncertainty
- Different or modification of p.d.f. in differential study?

First PID flow fluctuations

$$F_{v_n} = \frac{\sigma_{v_n}}{\langle v_n \rangle} = \sqrt{\frac{v_n^2 \{2\} - v_n^2 \{4\}}{v_n^2 \{2\} + v_n^2 \{4\}}}$$

OF

UNIVERSITY

COPENHAGEN

- First study of (relative) flow fluctuations of identified hadrons using v₂{2} and v₂{4}
- Particle species dependence is observed
 - Similar indications from hydro calculations
 - Final state effects modify the p.d.f.?

How does ψ_n fluctuate Flow vector fluctuations

Initial symmetry planes

U. Heinz etc, PRC87, 034913 (2013) F. G. Gardim etc, PRC87, 031901(R) (2013)

$$v_n\{2\} = \frac{\langle v_n(p_{\rm T}) \ v_n \cos n[\Psi_n(p_{\rm T}) - \Psi_n] \rangle}{\sqrt{\langle v_n^2 \rangle}}$$
$$v_n[2] = \sqrt{\langle v_n^2(p_{\rm T}) \rangle}$$

UNIVERSITY OF

COPENHAGEN

- * $v_2\{2\}/v_2[2] < 1$, indicates presence of flow angle and magnitude fluctuations
- How can we disentangle the two contributions and quantify each of them?

Flow angle and magnitude fluctuations

 New observable to measure flow angle fluctuations: New observable to measure
 flow magnitude fluctuations:

$$F(\Psi_n^a, \Psi_n) = \frac{\langle \langle \cos[n(\varphi_1^a + \varphi_2^a - \varphi_3 - \varphi_4)] \rangle \rangle}{\langle \langle \cos[n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4)] \rangle \rangle}$$
$$= \frac{\langle v_n^2(p_{\rm T}^a) \ v_n^2 \cos 2n[\Psi_n(p_{\rm T}^a) - \Psi_n] \rangle}{\langle v_n^2(p_{\rm T}^a) v_n^2 \rangle}$$
$$\approx \langle \cos 2n[\Psi_n(p_{\rm T}^a) - \Psi_n)] \rangle$$

$$\frac{\langle \langle \cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4) \rangle \rangle}{\langle \langle \cos n(\varphi_1^a - \varphi_3^a) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle \rangle} = \frac{\langle v_n^2(p_{\rm T}^a) v_n^2 \rangle}{\langle v_n^2(p_{\rm T}^a) \rangle \langle v_n^2 \rangle}$$

 $p_{\rm T}\text{-integrated baseline: }\langle v_n^4\rangle/\langle v_n^2\rangle^2$

 $F(\Psi_n^a,\Psi_n) < 1$ indicates $p_{\rm T}\text{-}{\rm dependent}$ flow angle fluctuations

Deviations from baseline indicate the $p_{\rm T}\text{-}$ dependent flow magnitude fluctuations

Flow angle fluctuations

- Probe pt dependent flow angle fluctuations with $F(\Psi_n^a, \Psi_n) \approx \langle \cos 2n [\Psi_n(p_T^a) \Psi_n)] \rangle$
- Deviations from unity strongest in central collisions
- * More than 5σ significance at high p_T in most centralities
- Comparison with model predictions:
 - iEBE-VISHNU underestimates the deviation in central collisions
 - AMPT works well in central while overestimates the data in semi-central
 - for p_T > 3 GeV/c, hydro calculations/predictions might not be reliable, CoLBT is only available in 10-20% and 40-50% with very limited statistics

Flow magnitude fluctuations

Probe pT dependent flow magnitude fluctuations

$$\frac{\langle \langle \cos n(\varphi_1^a + \varphi_2 - \varphi_3^a - \varphi_4) \rangle \rangle}{\langle \langle \cos n(\varphi_1^a - \varphi_3^a) \rangle \rangle \langle \langle \cos n(\varphi_2 - \varphi_4) \rangle \rangle} = \frac{\langle v_n^2(p_{\rm T}^a) v_n^2 \rangle}{\langle v_n^2(p_{\rm T}^a) \rangle \langle v_n^2 \rangle}$$

- Deviations from baseline at higher pT
- * 5 σ significance at high pT in most centralities (~3 σ in 30-40%)
- Comparison with model calculations:
 - iEBE-VISHNU are consistent with their baselines, but fail to reproduce ALICE data
 - AMPT works well in 0-5% centrality, fails in higher centralities
 - Relative deviation from unity by dividing the base line

(Normalized) Symmetric Cumulant

Symmetric cumulants:

 $SC(m,n) = \langle v_m^2 \, v_n^2 \rangle - \langle v_m^2 \rangle \, \langle v_n^2 \rangle$

PHYSICAL REVIEW C 89, 064904 (2014)

Generic framework for anisotropic flow analyses with multiparticle azimuthal correlations

Ante Bilandzic,¹ Christian Holm Christensen,¹ Kristjan Gulbrandsen,¹ Alexander Hansen,¹ and You Zhou^{2,3} ¹Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark ²Nikhef, Science Park 105, 1098 XG Amsterdam, The Netherlands ³Utrecht University, P.O. Box 80000, 3508 TA Utrecht, The Netherlands

ALICE, PRL117, 182301 (2016)

How do vn and

v_m correlate

UNIVERSITY OF

COPENHAGEN

- Comparison of SC and Normalized SC (NSC) to hydrodynamic calculations
 - Although hydro describes v_n fairly well, there is not a single centrality for which a given η /s parameterization describes simultaneously SC and NSC -> tighter constraints!
 - NSC(3,2) measurements provide direct access into the initial conditions (despite details of systems evolution)
 - what is the general correlation between any order of v_n^k and v_m^p and the correlations among multiple flow coefficients

$P(v_m, v_n, v_k, \ldots)$

PHYSICAL REVIEW C 103, 024913 (2021)

Generic algorithm for multiparticle cumulants of azimuthal correlations in high energy nucleus collisions

> Zuzana Moravcova[®], Kristjan Gulbrandsen[®],^{*} and You Zhou[®][†] Niels Bohr Institute, Blegdamsvej 17, 2100 Copenhagen, Denmark

Mixed harmonic cumulants with 4-particles

$$\operatorname{MHC}(v_m^2, v_n^2) = \operatorname{SC}(m, n) = \left\langle v_m^2 \, v_n^2 \right\rangle - \left\langle v_m^2 \right\rangle \, \left\langle v_n^2 \right\rangle$$

Mixed harmonic cumulants with 6-particles

$$\begin{split} \text{MHC} \left(v_{2}^{4}, v_{3}^{2} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 2\varphi_{2} + 3\varphi_{3} - 2\varphi_{4} - 2\varphi_{5} - 3\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{4} v_{3}^{2} \rangle - 4 \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{2}^{2} \rangle - \langle v_{2}^{4} \rangle \langle v_{3}^{2} \rangle \\ &+ 4 \langle v_{2}^{2} \rangle^{2} \langle v_{3}^{2} \rangle. \\ \text{MHC} \left(v_{2}^{2}, v_{3}^{4} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 3\varphi_{2} + 3\varphi_{3} - 2\varphi_{4} - 3\varphi_{5} - 3\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{2} v_{3}^{4} \rangle - 4 \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{3}^{2} \rangle - \langle v_{2}^{2} \rangle \langle v_{3}^{4} \rangle \\ &+ 4 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle^{2}. \\ \text{MHC} \left(v_{2}^{2}, v_{3}^{2}, v_{4}^{2} \right) &= \langle \langle e^{i \left(2\varphi_{1} + 3\varphi_{2} + 4\varphi_{3} - 2\varphi_{4} - 3\varphi_{5} - 4\varphi_{6} \right)} \rangle_{c} \\ &= \langle v_{2}^{2} v_{3}^{2} v_{4}^{2} \rangle - \langle v_{2}^{2} v_{3}^{2} \rangle \langle v_{4}^{2} \rangle - \langle v_{2}^{2} v_{4}^{2} \rangle \langle v_{3}^{2} \rangle \\ &- \langle v_{3}^{2} v_{4}^{2} \rangle \langle v_{2}^{2} \rangle + 2 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle \langle v_{4}^{2} \rangle. \end{split}$$

- Multi-particle mixed harmonic cumulants
 - correlation between v_m^k, v_n^l and v_p^q
 - correlation between v_m^k and v_n^l

Mixed harmonic cumulants with 8-particles

 $MHC(v_2^6, v_3^2) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 2\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 2\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^6 v_3^2 \rangle - 9 \langle v_2^4 v_3^2 \rangle \langle v_2^2 \rangle - \langle v_2^6 \rangle \langle v_3^2 \rangle$ $-9 \langle v_2^4 \rangle \langle v_2^2 v_3^2 \rangle - 36 \langle v_2^2 \rangle^3 \langle v_3^2 \rangle$ $+18\langle v_2^2\rangle\langle v_3^2\rangle\langle v_2^4\rangle+36\langle v_2^2\rangle^2\langle v_2^2\,v_3^2\rangle.$ $\mathrm{MHC}(v_2^4, v_3^4) = \langle \langle e^{i(2\varphi_1 + 2\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 2\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^4 v_3^4 \rangle - 4 \langle v_2^4 v_3^2 \rangle \langle v_3^2 \rangle$ $-4\langle v_2^2 v_3^4\rangle\langle v_2^2\rangle-\langle v_2^4\rangle\langle v_3^4\rangle$ $-8 \langle v_2^2 v_3^2 \rangle^2 - 24 \langle v_2^2 \rangle^2 \langle v_3^2 \rangle^2$ $+4 \langle v_{2}^{2} \rangle^{2} \langle v_{3}^{4} \rangle + 4 \langle v_{2}^{4} \rangle \langle v_{3}^{2} \rangle^{2}$ $+32\langle v_{2}^{2}\rangle\langle v_{3}^{2}\rangle\langle v_{2}^{2}v_{3}^{2}\rangle.$ $\mathrm{MHC}(v_2^2, v_3^6) = \langle \langle e^{i(2\varphi_1 + 3\varphi_2 + 3\varphi_3 + 3\varphi_4 - 2\varphi_5 - 3\varphi_6 - 3\varphi_7 - 3\varphi_8)} \rangle \rangle_c$ $= \langle v_2^2 v_3^6 \rangle - 9 \langle v_2^2 v_3^4 \rangle \langle v_3^2 \rangle - \langle v_3^6 \rangle \langle v_2^2 \rangle$ $-9\langle v_3^4\rangle\langle v_2^2 v_3^2\rangle - 36\langle v_2^2\rangle\langle v_3^2\rangle^3$ $+18 \langle v_{2}^{2} \rangle \langle v_{3}^{2} \rangle \langle v_{3}^{4} \rangle + 36 \langle v_{3}^{2} \rangle^{2} \langle v_{2}^{2} v_{3}^{2} \rangle.$

Correlations between v_m^2 , v_n^2 , v_k^2 ,...

ALICE, PLB818 (2021) 136354

- ♦ Non-zero value of $nMHC(v_2^2, v_3^2, v_4^2)$ in Pb-Pb collisions
 - Highly non-trivial correlations among three flow coefficients

UNIVERSITY OF COPENHAGEN

Correlations between v_2^k and v_3^L

• First measurement of correlations between higher order moments of v_2 and v_3

- characteristic -, +, signs observed for 4-, 6- and 8-particle cumulants of mixed harmonic
- Final state results quantitatively reproduced by the initial state correlations

COPENHAGEN

 Experimental data provides direct constraints on the correlations of higher order moments of eccentricity coefficients

Ψ_n correlations: P(Ψ_m , Ψ_n , Ψ_k)

Stronger initial symmetry plane correlations likely results in stronger final state flow symmetry plane correlations

Expectations:

- Central collision:
 - + ψ_2, ψ_4 randomly fluctuate, weak correlations
 - <cos4(ψ₂-ψ₄)> is small

• Peripheral collisions:

- ψ_2, ψ_4 tend to align, strong correlations
- $<\cos4(\psi_2-\psi_4)>$ is large

How do ψ_n and

 ψ_m correlate

Ψ_n correlations: P(Ψ_m , Ψ_n , Ψ_k)

ALICE, PLB773 (2017) 68, JHEP05 (2020) 085

- ρ_{mn} , probes the symmetry plane correlations
 - No energy dependence between measurements except $\rho_{6,222}$
 - Among many models, TRENTo model does not work well in $\rho_{n,\,mk}$

EKRT, PRC93, 024907 (2016) TRENTo, EPJC77 (2017) 645 AMPT, EPJC77 (2017) 645 IP-Glasma, PRC95, 064913 (2017)

Bayesian analyses with simple vn

J.E. Bernhard etc, Nature Physics, 15, 1113 (2019)

JETSCAPE, Phys. Rev. Lett. 126, 242301 (2021)

UNIVERSITY OF COPENHAGEN

`**₹"**₽⊒ `````

Bayesian analysis with more flow observables

You Zhou (NBI) @ RHIC-BES seminar

UNIVERSITY OF

COPENHAGEN

Flow studies -> IC (shape) and QGP properties

UNIVERSITY OF COPENHAGEN

<pt>> - vn correlations

Shape of the fireball: Anisotropic flow

\bullet Size of the fireball: radial flow, [$p_{\rm T}$]

Initial geometry and fluctuations of shape and size

 \clubsuit Final state: correlation between v_n and $p_{\rm T}$

$$\rho(v_n^2, [p_T]) = \frac{cov(v_n^2, [p_T])}{\sqrt{var(v_n^2)}\sqrt{var([p_T])}}$$
P. Bozek etc, PRC96 (2017) 014904

 $\approx cov(v_n^2, [p_T]): 3-particle correlation (2 azimuthal, I [p_T])$ $\left\langle \frac{\sum_{i \neq j \neq k} w_i w_j w_k e^{in\phi_i} e^{-in\phi_j} (p_{T,k} - \langle \langle p_T \rangle \rangle)}{\sum_{i \neq j \neq k} w_i w_j w_k} \right\rangle_{evt}$ $\approx \sqrt{var(v_n^2): 2 and 4-particle azimuthal correlations}$

$$= v_n \{2\}^{\intercal} - v_n \{4\}^{\intercal}$$

$$\approx \sqrt{var([p_T])} : 2\text{-particle [p_T] correlations}$$

$$\left\langle \frac{\sum_{i \neq j} w_i w_j (p_{T,i} - \langle \langle p_T \rangle) (p_{T,j} - \langle \langle p_T \rangle \rangle)}{\sum_{i \neq j} w_i w_j} \right\rangle_{evt}$$

UNIVERSITY OF COPENHAGEN YOL

ρ_2 in Pb-Pb

- IP-Glasma-IC: IP-Glasma+MUSIC+UrQMD slightly overestimate the Pb-Pb data
- TRENTo-IC based calculations show strong centrality dependence, negative values for centrality >40%
 - v-USPhydro, Trajectum, JETSCAPE

UNIVERSITY OF

COPENHAGEN

- The difference is from the initial stage: geometric effects or initial momentum anisotropy (CGC)?
 - No significant difference between the "full IP-Glasma" and "FSE only" for the presented centralities
 - Difference not from initial momentum anisotropy and confirm the different geometric effects

ρ_2 in Xe-Xe

v-USPhydro, PRC103 (2021) 2, 024909

Significant differences of initial state calculations using different deformation parameter in central Xe-Xe collisions

• ρ_2 is sensitivties to β_2

UNIVERSITY OF

COPENHAGEN

- The uncertainty of current v-USPhydro calculations is too large to draw a confirm conclusions
- Experimental data (in Xe-Xe@LHC and U-U@RHIC) open a new window to study nucleon deformation.

Probe triaxial structure of Xe

* Better agreement between LHC data and calculations with $\gamma = 26.93^{\circ}$

Indication of triaxial structure of Xe at high energy

COPENHAGEN

New connection of high-energy heavy-ion physics to low-energy nuclear (structure) physics

ρ₃ in Pb-Pb and Xe-Xe

ALI-PREL-494374

JETSCAPE, PRL126, 242301 (2021) Privation communication Trajectum, PRL126, 202301 (2021) Privation communication v-USPhydro, PRC103 (2021) 2, 024909

UNIVERSITY OF COPENHAGEN

 $\bullet \rho_3$ values:

- positive
- have a modest centrality dependence for the presented centralities,
- better described by IP-Glasma,
- TRENTo predicts negative ρ₃, getting worse for Trajectum and JETSCAPE calculations

 \bigstar model shows that ρ_3 is not sensitive to β_2

Difference of full IP-Glasma and FSE only, indication of potential contributions from IMA in peripheral?

Difference in IP-Glasma and TRENTo: potential explanations

Sensitive to the nucleon width parameter (size of nucleon)

- IP-Glasma ~ 0.3; v-USPhydro ~ 0.5; Trajectum~0.7; JETSCAPE (T_RENTo) ~ 1.1
- w(IP-Glasma) < w(v-USPhydro) < w(Trajectum) < w(JETSCAPE)

Different types of thickness functions

• T_RENTo $\left(\frac{T_A^p + T_B^p}{2}\right)^{1/p}$ with p≈0 $\sqrt{T_A T_B}$, IP-Glasma $T_A T_B$ type

Different contributions from pre-hydrodynamic phase (free streaming) and sub-nucleon structure

UNIVERSITY OF COPENHAGEN

Higher-order correlations

The first measurement of higher-order [pT], v2 and v3 correlations
P. Bozek etc, PRC104 (2021) 1, 014905

$$\rho(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}]) = \frac{C(v_{\rm m}^2, v_{\rm n}^2, [p_{\rm T}])}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm n}^2)}\sqrt{c_k}} - \frac{\langle v_{\rm m}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \rho_{\rm n} - \frac{\langle v_{\rm n}^2 \rangle}{\sqrt{\operatorname{Var}(v_{\rm n}^2)}} \cdot \rho_{\rm m} - \frac{\langle [p_{\rm T}] \rangle}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}} \cdot \frac{SC(m, n)}{\sqrt{\operatorname{Var}(v_{\rm m}^2)}\sqrt{\operatorname{Var}(v_{\rm m}^2)}}$$

- * the first ρ_{23} measurement is non-zero
 - negative for the presented centrality
 - anti-correlations between two flow coefficients and [pT]
- φ₂₃ from IP-Glasma and v-USPhydro are different for centrality >40%
 - Also difference of full IP-Glasma and FSE only, indication of IMA?
- Not conclusive on which model works better due to sizeable uncertainties

COPENHAGEN

 An improved result will be available soon by using the entire Run2 data

Large is large, but is small really small ?

Collective flow in small systems

Multi-particle cumulants

✤ p-Pb and pp collisions

UNIVERSITY OF

COPENHAGEN

- Non-zero v2 and v2{4} \approx v2{6}, strong evidence of flow in small systems!
- Future LHC Run3 & 4 programs will enable the measurements of v₂{8}, v₂{10} and v₂{12} in small systems

No negative $c_2{4}$ in hydro in pp

Also see: B. Schenke etc, PRC102, 044905 (2020)

- Any solution or progress on the wrong sign of c₂{4} from hydro?
 - Will 3+1D hydro help?

UNIVERSITY OF COPENHAGEN

PID vn in small systems

- What we knew: v_2 of identified particles in **Pb-Pb**
 - \bullet at low p_T : mass ordering, described by hydrodynamic calculations
 - at intermediate pT: approximate baryon/meson grouping

\bigstar What we also had: v₂ of identified particles in **p-Pb**

- at low p_T: most particle species follow mass ordering -> hydrodynamic flow?
- at intermediate p_T : baryon $v_2 > meson v_2 -> partonic collectivity? Indication of QGP?$
- A better experimental treatment on non-flow is in preparation

✤ What about pp?

UNIVERSITY

COPENHAGEN

• Will similar behaviours remain?

0-20% (V0A)

5

6

 $p_{_{
m T}}\,({
m GeV}/c)$

Origin of mass ordering

✤ Mass ordering of PID v₂ in small collision systems

UNIVERSITY OF

COPENHAGEN

- Qualitatively predicted by initial stage effects (e.g. CGC+Lund), or final stage effects: hydro (iEBE-VISHNU), parton escape (AMPT), hadronic rescatterings (UrQMD)
- Mass ordering at low p_T might not be used as an evidence of hydrodynamic flow
- quantitative comparison to non-flow suppressed/subtracted data will be extremely useful

NCQ scaling from coalescence

W. Zhao etc., Phys. Rev. Lett. 125, 072301 (2020)

Calculation with quark coalescence gives a better but not a perfect scaling

- A perfect NCQ scaling is not the requirement of partonic collectivity.
- Baryon/meson v_2 grouping or v_2 (baryons) > v_2 (mesons) is not the evidence of partonic collectivity
 - Further separation at high p_T might be a better probe of partonic flow?
 - Special role of ϕ meson (follows meson group if partonic flow and baryon flow if hydro+frag)?
- A future precision data/model comparison will be highly needed

UNIVERSITY OF

COPENHAGEN

• New ALICE data in both p-Pb and pp with much improved non-flow subtractions at QM2022

More results in smaller colliding systems

- Search for the initial momentum anisotropy (IMA) in smaller colliding systems
 - Peripheral Pb-Pb collisions
 - Slope changes for $N_{ch} \sim 100$ for data and ~ 20 for IP-Glasma calculations
 - Both AMPT and IP-Glasma+hydro predicts slope changes -> not unique signature of IMA?
 - pp collisions:

UNIVERSITY OF

COPENHAGEN

- Decreasing trend with increasing N_{ch} , results are consistent with the one in Pb-Pb
- AMPT generates stronger anti-correlations, PYTHIA predicted a wrong N_{ch} dependence
- Non-flow is a main challenge, many important studies by J. Jia, C. Zhang, J. Nagle etc

Summary

Collective flow in Large and Small systems

For Large systems:

- Many flow studies on the joint p.d.f., and new study includes correlations between anisotropic flow and radial flow
 - New constraints on the initial conditions and the properties of QGP
 - New possibility to probe nuclear structure at high energy
 - T_RENTo model seems to have a new challenge, which might further affect the current understanding or the properties of QGP, via Bayesian analysis

☆ For small systems

- Few selected flow observables have been discussed
 - Wrong sign of $c_2{4}$ in hydro remain unsolved
 - PID v_n (at intermediate and high pt) in small system will show more hints of partonic collectivity
 - Probe possible IMA at low multiplicity, where non-flow is still a challenge.

There have been many more exciting new results in the past few years — my apology if I can not cover them all here.

Thanks for your attention!

Backup

Jiangyong Jia, J.Phys.G 41 (2014) 12

	pdfs	cumulants
	$p(v_n)$	$v_n\{2k\}, k = 1, 2, \dots$
Flow- amplitudes	$p(v_n, v_m)$	$\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle, \ n \neq m$
	$p(v_n, v_m, v_l)$	$ \begin{array}{c} \langle v_n^2 v_m^2 v_l^2 \rangle + 2 \langle v_n^2 \rangle \langle v_m^2 \rangle \langle v_l^2 \rangle - \\ \langle v_n^2 v_m^2 \rangle \langle v_l^2 \rangle - \langle v_m^2 v_l^2 \rangle \langle v_n^2 \rangle - \langle v_l^2 v_n^2 \rangle \langle v_m^2 \rangle \end{array} $
		$n \neq m \neq l$
		Obtained recursively as above
EP- correlation	$p(\Phi_n, \Phi_m,)$	$ \begin{array}{l} \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0 \end{array} $
Mixed- correlation	$p(v_l, \Phi_n, \Phi_m, \ldots)$	$ \begin{array}{c} \langle v_l^2 v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle - \\ \langle v_l^2 \rangle \langle v_n^{ c_n } v_m^{ c_m } \dots \cos(c_n n \Phi_n + c_m m \Phi_m + \dots) \rangle \\ \sum_k k c_k = 0, \ n \neq m \neq l \dots \end{array} $

Ψ_n fluctuations $P(\Psi_n)$

- Breakdown of factorization more pronounced in central collisions.
- Hydrodynamic reproduce the factorization broken

COPENHAGEN

- Indication of p_{T} dependent flow angle (and magnitude) fluctuations
- Using novel multi-particle correlations, both flow-angle and flow magnitude fluctuations are observed in experiments (see backup for more details)

$P(v_n) \rightarrow P(\varepsilon_n)$

ATLAS, JHEP11, 183 (2013)

Elliptic-power function: 100 20-25% $P(v_2/(v_2))$, $P(\varepsilon_2/(\varepsilon_2))$ 10 $P(v_2) = \frac{\mathrm{d}\varepsilon_2}{\mathrm{d}v_2} P(\varepsilon_2) = \frac{1}{k_2} P\left(\frac{v_2}{k_2}\right) = \frac{2\alpha v_2}{\pi k_2^2} \left(1 - \varepsilon_0^2\right)^{\alpha + 1/2} \int_0^\pi \frac{(1 - v_2^2/k_2^2)^{\alpha - 1}}{(1 - v_2\varepsilon_0 \cos\varphi/k_2)^{2\alpha + 1}} \mathrm{d}\varphi$ 1 0.1 $c_2\{2\} = k_2^2 (1 - f_1),$ $c_2\{4\} = -k_2^4 \left(1 - 2f_1 + 2f_1^2 - f_2\right),$ 0.01 0.5 ٥ $c_{2}{6} = k_{2}^{6} (4 + 18 f_{1}^{2} - 12 f_{1}^{3} + 12 f_{1} (3 f_{2} - 1) - 6 f_{2} - f_{3}),$ $c_2\{8\} = -k_2^8 \left(33 - 288 f_1^3 + 144 f_1^4 - 66 f_2 + 18 f_2^2 - 24 f_1^2 (-11 + 6 f_2)\right)$ 100 20-25% $^{2}(v_{3}/(v_{3})), P(e_{3}/(e_{3}))$ $-12 f_3 + 4 f_1(-33 + 42 f_2 + 4 f_3) - f_4)$ 10 1 $f_k \equiv \langle (1 - \varepsilon_n^2)^k \rangle = \frac{\alpha}{\alpha + k} \left(1 - \varepsilon_0^2 \right)^k {}_2F_1\left(k + \frac{1}{2}, k; \alpha + k + 1, \varepsilon_0^2\right)$ 0.1 0.01 0 0.5 100 20-25% $P(v_4/\langle v_4 \rangle), P(\varepsilon_4/\langle \varepsilon_4 \rangle)$ $\mathsf{P}(\mathsf{v_2})^*\langle \mathsf{v_2} \rangle$ 10 45-50% 1 Pb-Pb 5.02 TeV 0.1 IP-Glasma + MUSIC Pb-Pb 2.76 TeV, |η|<2.5 AMPT-IC + iEBE-VISHNU ATLAS: 0.5<p_<1 GeV/c</p> 10^{-3} 0.01 ATLAS: p_>0.5 GeV/c 0 0.5 TRENTo-IC + iEBE-VISHNU 0.5 1 1.5 2 2.5 0.5 1.5 2 2.5 $v_2 / \langle v_2 \rangle$ $v_2 / \langle v_2 \rangle$

UNIVERSITY OF COPENHAGEN

NCQ scaling from coalescence

W. Zhao etc., Phys. Rev. Lett. 125, 072301 (2020)

COPENHAGEN

$P(v_n)$ from multi-particle cumulants of v_n

UNIVERSITY OF

COPENHAGEN

Multi-particle **correlations** of single harmonic \boldsymbol{v}_n

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle = \langle v_n^4 \cos(n\Phi_n - n\Phi_n + n\Phi_n - n\Phi_n) \rangle = \langle v_n^4 \rangle$$

Multi-particle *cumulants* of single harmonic v_n

$$\langle \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle \rangle_c = \langle \cos(n\phi_1 - n\phi_2 + n\phi_3 - n\phi_4) \rangle$$
$$- \langle \langle \cos(n\phi_1 - n\phi_2) \rangle \rangle \langle \langle \cos(n\phi_3 - n\phi_4) \rangle \rangle$$
$$- \langle \langle \cos(n\phi_1 - n\phi_4) \rangle \rangle \langle \langle \cos(n\phi_2 - n\phi_3) \rangle$$
$$= \langle v_n^4 \rangle - 2 \langle v_n^2 \rangle^2$$

$$\begin{split} v_n\{2\} &= \sqrt[2]{\langle v_n^2 \rangle}, \\ v_n\{4\} &= \sqrt[4]{2\langle v_n^2 \rangle^2 - \langle v_n^4 \rangle}, \\ v_n\{6\} &= \sqrt[6]{\langle v_n^6 \rangle - 9\langle v_n^2 \rangle \langle v_n^4 \rangle + 12\langle v_n^2 \rangle^3}, \\ v_n\{8\} &= \sqrt[8]{\langle v_n^8 \rangle - 16\langle v_n^2 \rangle \langle v_n^6 \rangle - 18\langle v_n^4 \rangle^2 + 144\langle v_n^2 \rangle^2 \langle v_n^4 \rangle - 144\langle v_n^2 \rangle^4}. \end{split}$$

