

中國科學院為能物路納完施 Institute of High Energy Physics Chinese Academy of Sciences

Jet Charge at CEPC

Hanhua Cui Manqi Ruan cuihanhua@ihep.ac.cn

CEPC Physics and Detector Plenary Meeting, September 29, 2021

Outline

- Introduction
- Samples
- Method
- Results
- Conclusion

Introduction

Introduction of Jet Charge

We already have flavor tagging algorithm, Jet Charge can help find more physics

What is Jet Charge?

• To determine initial jet charge, namely b quark v.s. \overline{b} quark / c quark v.s. \overline{c} quark

Application of Jet Charge:

- The measurements of specific heavy hadrons channel
- The electroweak precision measurements
 - e.g. A_{FB}(Forward and Backward Asymmetry);
 - $\sin^2 \theta_W$ (electroweak mixing angle);
 - CP Violation measurement

Jet Charge Algorithm

Jet Charge Algorithm at Truth Level:

Input:

- Information of final particles:
 - Charge
 - ► Energy
 - Momentum
 - ▶ ...

Output:

- Jet charge
- Description of Jet Charge
 - Misjudgment rate ω
 - Effective tagging power

Jet Charge at CEPC

High productivity

Why CEPC?

- 3 x 10¹¹ 10¹² Z bosons in 2 years
- $b\bar{b}$ branching fraction: 15.2%
- 0.152 × 10¹¹ 10¹² $b\bar{b}$

Good detector system

- Good VTX reconstruction
- Good PID system

Clean environment

Different particle flavors

- $Z \rightarrow b\bar{b}$ events
- $Z \rightarrow c\bar{c}$ events

Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	$6 imes 10^{10}$	$3 imes 10^{10} \ (50 \ \mathrm{ab^{-1}} \ \mathrm{on} \ \Upsilon(4S))$	$3 imes 10^{13}$
B^0	6×10^{10}	$3 imes 10^{10}$ (50 ab^{-1} on $\Upsilon(4S)$)	3×10^{13}
B_s	2×10^{10}	3×10^8 (5 $\mathrm{ab^{-1}}$ on $\Upsilon(5S)$)	$8 imes 10^{12}$
b baryons	1×10^{10}		$1 imes 10^{13}$
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	$2 imes 10^{11}$		
D^+	6×10^{10}		
D_s^+	$3 imes 10^{10}$		
Λ_c^+	2×10^{10}		
$ au^+$	3×10^{10}	$5 imes 10^{10} \text{ (} 50 \text{ ab}^{-1} \text{ on } \Upsilon(4S)\text{)}$	
		From CEP	C CDR 2018

Flavor production at different experiments

Samples

Samples

Samples:

- ► WHIZARD195
- ► CEPC Z pole (91.2 GeV) at Truth level
 - 16 million $Z \rightarrow b\bar{b}$ events:
 - easy to select
 - 16 million $Z \rightarrow c\bar{c}$ events:
 - simpler decay behavior

Final particles we consider:

- *leptons:* e^+e^- , $\mu^+\mu^-$
- *Kaons: K*⁺*K*⁻
- pions: $\pi^+\pi^-$
- protons: p^+p^-

Method

How to develop Jet Charge?

Jet Charge Algorithm:

- Use Jet Clustering to divide final leading particles into two jets
- Find the relationship between observables(charge, energy) of final leading particles and jet charge:
 - For $Z \rightarrow b\bar{b}$ samples:
 - $e^{-}, \mu^{-}, K^{-}, \pi^{-}, p^{+}$ are closer to *b* jet
 - e^+ , μ^+ , K^+ , π^+ , p^- are closer to \bar{b} jet
 - For $Z \rightarrow c\bar{c}$ samples:
 - e^+ , μ^+ , K^- , π^+ , p^+ are closer to *c* jet
 - e^- , μ^- , K^+ , π^- , p^+ are closer to \bar{c} jet
 - Combine the information of two jets
- Use those observables(charge, energy) to measure jet charge
- Use Misjudgment rate ω and effective tagging power to describe Jet Charge

How to describe Jet Charge?

Misjudgment rate ω:

• To describe the probability of misjudging the jet charge

 $\omega = \frac{\text{Number of selected final particles that incorrectly reflect the charge flow of b jet to <math>\overline{b}$ jet Number of selected final particles

Efficiency:

• To describe the selection efficiency of $Z \rightarrow b\bar{b}$ or $Z \rightarrow c\bar{c}$ samples: Efficiency = $\frac{\text{Number of selected final particles}}{\text{Number of all final particles}}$

Effective tagging power ETP:

To consider both misjudgment rate ω and efficiency to describe the total performance of Jet Charge

Effective tagging power = Efficiency * $(1 - 2 * \omega)^2$

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Categorize the final leading particles:

(e, μ, K) & ($\pi, proton$)

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Categorize the final leading particles:

(e, μ, K) & ($\pi, proton$)

- 2. Misjudgment rate ω and effective tagging power of each category
- 3. Impact of energy threshold of the final leading particles
- 4. Distribution of each B/C hadron
- 5. Effective tagging power of each B/C hadron
- 6. The "same charged" samples
- 7. Samples only decayed to leading particles
- 8. Typical channels: Bs, Bc, Λ_b , ...
- 9. More information from final particles
- **10. Different generators (e.g. Evtgen, ...)**

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Categorize the final leading particles:

(e, μ, K) & ($\pi, proton$)

Yangzhou, April

- 2. Misjudgment rate ω and effective tagging power of each category
- 3. Impact of energy threshold of the final leading particles

1. Because the lepton and Kaon can deliver better misjudgment rate ω than pion and proton. \rightarrow Categorize the final leading particles:

 $\{e, \mu, K\}\{e, \mu, K\}$ can deliver better results Yangzhou, April

 $Z \rightarrow b\bar{b}$ Total Effective Tagging Power = 0.127

2. Misjudgme $Z \rightarrow c\bar{c}$ Total Effective Tagging Power = 0.282 each category

15

- 3. Impact of energy No energy threshold is the best case particles
- 4. Distribution of eacl Symmetric between two jets
- 5. Effective t High dependence of different hadron combination flavor, September
- 6. The "same charged Some small improvements

7. Samples only decayed to leading particles

This Report

Future Plans

- 8. Typical channels: Bs, Bc, Λ_b , ...
- 9. More information from final particles
- 10. Different generators (e.g. Evtgen, ...)

Results

Firstly, we have to understand the distribution of samples

Multiplicity of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3	Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05	0	0.02%	1.24%	0.76%	6E-05
1	1.25%	96.08%	0.03%	0.05%	1	1.24%	94.74%	0.03%	0.46%
2	0.61%	0.03%	0.03%	2E-07	2	0.75%	0.03%	0.21%	6E-05
3	8E-06	0.05%	3E-07	2E-07	3	6E-05	0.46%	5E-05	2E-05
	each	jet has o	one B			each	jet has o	one C	

Multiplicity of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3		Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05		0	0.02%	1.24%	0.76%	6E-05
1	1.25%	96.08%	0.03%	0.05%		1	1.24%	94.74%	0.03%	0.46%
2	0.61%	0.03%	0.03%	2E-07		2	0.75%	0.03%	0.21%	6E-05
3	8E-06	0.05%	3E-07	2E-07		3	6E-05	0.46%	5E-05	2E-05
82.49	« decaye	ed to lea	ding pa	rticle	66.2% decayed to leading particle					ticle

Multiplicity of B/C hadrons

Num_B bbar jet → b jet ↓	0	1	2	3	Num_C cbar jet → c jet ↓	0	1	2	3
0	0.02%	1.25%	0.61%	1E-05	0	0.02%	1.24%	0.76%	6E-05
	1.25%	96.08%	0.03%	0.05%	1	1.24%	94.74%	0.03%	0.46%
2	0.61%	0.03%	0.03%	2E-07	2	0.75%	0.03%	0.21%	6E-05
3	8E-06	0.05%	3E-07	2E-07	3	6E-05	0.46%	5E-05	2E-05

Divided into: both all cases & the case only decayed to leading particles

$Z \rightarrow b\bar{b}$ Percent of B hadrons of b jet and \bar{b} jet

percent bbar jet → b jet ↓	B ⁰	B+	B _s ⁰	B _c +	Λ_b bar	others	all
B ⁰ bar	17.360%	17.350%	3.369%	0.022%	2.759%	0.688%	41.548%
B-	17.350%	17.359%	3.364%	0.022%	2.765%	0.689%	41.550%
B₅⁰bar	3.355%	3.362%	0.652%	0.004%	0.545%	0.144%	8.062%
B _c -	0.022%	0.022%	0.004%	0.00003%	0.004%	0.001%	0.052%
Λ_{b}	2.762%	2.762%	0.543%	0.004%	0.451%	0.121%	6.644%
others	0.653%	0.655%	0.136%	0.001%	0.119%	0.579%	2.144%
all	41.503%	41.511%	8.068%	0.053%	6.641%	2.225%	100%

$Z \rightarrow c\bar{c}$ Percent of C hadrons of c jet and \bar{c} jet

percent cbar jet → c jet ↓	D⁰bar	D-	D₅⁰bar	∧ _c -	others	all
D ₀	4.654%	13.302%	1.717%	1.444%	0.529%	21.532%
D+	13.290%	37.933%	4.887%	4.110%	1.122%	61.342%
D _s 0	1.712%	4.894%	0.631%	0.533%	0.159%	7.929%
Λ_{c} +	1.442%	4.111%	0.533%	0.449%	0.141%	6.676%
others	0.402%	1.066%	0.148%	0.135%	0.656%	2.521%
all	21.500%	61.306%	7.916%	6.671%	2.607%	100%

$\mathbf{Z} ightarrow bar{b}$ Percent of final charged leading particles of b jet and $ar{b}$ jet

The distribution of each charged particle of two jets is asymmetry

Secondly, let us explore the misjudgment rate ω

$Z \rightarrow b\bar{b}$ Percent of final charged leading particles of b jet and \bar{b} jet

The distribution of each charged particle of two jets is asymmetry

Percent of leading particles of each B hadron of b jet

 $Z \rightarrow b\bar{b}$

Percent of leading particles of each B hadron of $ar{b}$ jet

 $Z \rightarrow b\bar{b}$

$Z \rightarrow c\bar{c}$ Percent of final charged leading particles of c jet and \bar{c} jet

The distribution of each charged particle of two jets is asymmetry

$Z \rightarrow c\bar{c}$ Percent of final charged leading particles of c jet and \bar{c} jet

The distribution of each charged particle of two jets is asymmetry

Percent of leading particles of each C hadron of c jet

 $Z \rightarrow c\bar{c}$

Percent of leading particles of each C hadron of \bar{c} jet

 $Z \rightarrow c\bar{c}$

Misjudgment rate ω of $\{e, \mu, K\}$ $\{e, \mu, K\}$

Total Misjudgment rate $\omega = 11.73\%$

Total Misjudgment rate $\omega = 9.20\%$

% bbar jet → b jet ↓	B ₀	B+	B _s 0	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	Bs ⁰	B _c +	∧₀bar
B ⁰ bar	16.73	9.42	27.80	12.80	10.51	B ⁰ bar	14.74	6.55	29.20	7.22	8.67
B-	9.51	5.09	17.08	9.55	5.78	B-	6.62	2.74	14.74	3.77	3.89
B₅⁰bar	28.07	16.59	43.62	36.21	19.09	B₅⁰bar	29.29	14.41	50.47	27.27	19.61
Bc⁻	19.74	7.30	46.81	-	11.43	Bc⁻	14.56	4.63	50.00	-	18.18
Λ_{b}	10.63	5.52	19.20	3.85	6.11	۸b	8.99	3.59	19.80	0	4.80

All B hadrons

B hadrons that decayed to leading particles

Misjudgment rate ω of $\{e, \mu, K\}$

Total Misjudgment rate $\omega = 4.03\%$

Total Misjudgment rate $\omega = 1.11\%$

% cbar jet → c jet ↓	D ⁰ bar	D-	D₅⁰bar	∧ _c -	% cbar jet → c jet ↓	D ⁰ bar	D-	D₅⁰bar	∧ _c -
D0	4.53	2.98	12.90	8.50	D ⁰	1.80	0.55	11.78	4.16
D+	3.03	2.05	8.80	6.29	D+	0.57	0.17	4.08	1.26
D _s 0	12.64	9.13	31.45	21.65	Ds ⁰	11.87	4.32	51.86	25.84
Λ_{c}^{+}	8.32	5.96	23.37	15.07	∧ _c +	4.27	1.37	26.06	10.57

All C hadrons

C hadrons that decayed to leading particles

Besides, add energy information of same charged samples

Charge verse, Charge same, Charge correct

35

For leading e, μ, K of b jet and \overline{b} jet

For leading e, μ, K of c jet and \overline{c} jet

Charge verse, Charge same, Charge correct

For leading e, μ, K of b jet and \overline{b} jet

For leading e, μ, K of c jet and \bar{c} jet

Two methods of using same charge samples

About 7.9% and 6.7% improvement for $Z \rightarrow b\bar{b} \& Z \rightarrow c\bar{c}$ samples

1. For the two leading particles of two jets, measure jet charge by the charge of the leading particle with higher energy.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.127 to 0.137

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.127 to 0.136

2. For the two leading particles and two sub-leading particles of two jets, measure jet charge by the charge of the leading particle which has higher energy difference with the sub-leading particle.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.282 to 0.301

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.282 to 0.294

Two methods of using same charge samples

The first method is better

1. For the two leading particles of two jets, measure jet charge by the charge of the leading particle with higher energy.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.127 to 0.137

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.127 to 0.136

2. For the two leading particles and two sub-leading particles of two jets, measure jet charge by the charge of the leading particle which has higher energy difference with the sub-leading particle.

For $Z \rightarrow b\bar{b}$: Improve Effective Tagging Power from 0.282 to 0.301

For $Z \rightarrow c\bar{c}$: Improve Effective Tagging Power from 0.282 to 0.294

The effective tagging power

$Z \rightarrow b\bar{b}$ Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ⁰	B+	B _s 0	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	Bs ⁰	B _c +	∧₀bar
B ⁰ bar	7.792	14.044	3.491	8.346	20.179	B ⁰ bar	8.403	15.213	3.775	8.961	22.144
B-	13.965	20.604	8.734	14.568	27.854	B-	15.137	22.434	9.500	16.784	30.450
B₅⁰bar	3.486	8.882	0.363	3.046	13.346	B₅⁰bar	3.730	9.673	0.382	3.406	14.756
Bc⁻	7.820	14.426	0.774	-	23.294	B _c -	8.639	15.817	1.061	-	25.021
Λ_{b}	20.268	27.788	13.064	22.841	37.460	۸b	22.224	30.313	14.518	26.729	40.840

charge verse

$Z \rightarrow b\bar{b}$ Weighted Effective Tagging Power of B Hadrons

Total Effective Tagging Power = 12.736%

Total Effective Tagging Power = 13.716%

% bbar jet → b jet ↓	B ₀	B+	₿s ⁰	B _c +	Λ_b bar	% bbar jet → b jet ↓	B ⁰	B+	₿s ⁰	B _c +	∧₀bar
B ⁰ bar	1.353	2.437	0.118	0.002	0.557	B ⁰ bar	1.459	2.640	0.127	0.002	0.611
B-	2.423	3.577	0.294	0.003	0.770	B-	2.627	3.895	0.320	0.004	0.842
B₅⁰bar	0.117	0.299	0.002	0.0001	0.073	B₅⁰bar	0.125	0.325	0.003	0.0001	0.080
Bc⁻	0.002	0.003	0.00003	-	0.0008	Bc⁻	0.002	0.003	0.00005	-	0.0009
Λ_{b}	0.560	0.768	0.071	0.0008	0.169	۸b	0.614	0.837	0.079	0.001	0.184

charge verse

$Z \rightarrow c\bar{c}$ Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	D ⁰ bar	D-	D _s ºbar	∧ _c -	% cbar jet → c jet ↓	Dºbar	D-	D _s ºbar	∧ _c -
D0	25.605	28.561	21.514	32.280	D0	27.184	30.702	22.353	35.202
D+	28.544	31.285	24.395	34.759	D+	30.644	33.779	25.816	37.813
D _s 0	21.452	24.252	17.423	28.135	D _s 0	22.287	25.670	18.006	30.236
Λ_{c}^{+}	32.148	34.849	27.635	39.511	∧ _c +	35.135	37.930	29.543	42.924

charge verse

$Z \rightarrow c\bar{c}$ Weighted Effective Tagging Power of C Hadrons

Total Effective Tagging Power = 28.214%

Total Effective Tagging Power = 30.116%

% cbar jet → c jet ↓	Dºbar	D-	D _s ºbar	∧ _c -	% cbar jet → c jet ↓	Dºbar	D-	D _s 0bar	∧ _c -
D ⁰	1.192	3.800	0.370	0.466	D0	1.265	4.085	0.384	0.508
D+	3.794	11.870	1.1925	1.429	D+	4.074	12.817	1.262	1.554
Ds ⁰	0.367	1.187	0.110	0.150	D _s 0	0.382	1.257	0.114	0.161
Λ_{c}^{+}	0.464	1.433	0.147	0.177	∧ _c +	0.507	1.560	0.157	0.193

charge verse

Conclusion

Main results:

For $Z \rightarrow b\bar{b} \& Z \rightarrow c\bar{c}$ samples at CEPC Z pole:

★ Distribution

• Percent & Multiplicity of B/C hadrons

 \star Misjudgment rate ω

- Distribution of final charged leading particles
- Distribution of final charged leading particles of each B/C hadrons
- All Hadrons v.s. Hadrons that decayed to leading particles

★ Effective tagging power

- High dependence between different hadron channels
- Potential of typical B/C hadrons(See Next...)

★ Charge verse + Charge same

- For $Z \rightarrow b\bar{b}$ at Truth level:
 - Using only charge verse: effective tagging power = 0.127
 - Using also charge same: effective tagging power = 0.137
- For $Z \rightarrow c\bar{c}$ at Truth level:
 - Using only charge verse: effective tagging power = 0.282
 - Using also charge same: effective tagging power = 0.301

Next...

Set Charge in typical channels

- ► B_s hadrons: prompt Kaon
- ► B_c hadrons: prompt D meson
- ► *A_b* hadrons: prompt proton
- ▶...

More information from final particles

- from primary vertex / secondary vertex
- each flavor select one leading particle
- Ieading particles + sub-leading particles
- ► charged particles + neutral particles(e.g. K_S, K_L, ...)
- Model cross checking
 - Using different generators (e.g. Evtgen, ...)
- ML(BDT) to train input informations
- Sevent level → Jet level
- See Truth level → Full simulated level
 - CEPC detector performance

Back Up

$Z \rightarrow b\bar{b}$ Effective Tagging Power with Uncertainty

Total Effective Tagging Power = $(13.716 \pm 0.014)\%$

% bbar jet → b jet ↓	B ⁰	B+	B _s 0	B _c +	∧bar
B ⁰ bar	8.403	15.213	3.775	8.961	22.144
	±0.026	±0.037	±0.037	±0.768	±0.110
B-	15.137	22.434	9.500	16.784	30.450
	±0.047	±0.062	±0.063	±1.071	±0.134
B₅⁰bar	3.730	9.673	0.382	3.406	14.756
	±0.037	±0.063	±0.024	±0.954	±0.187
B _c -	8.639 ±0.732	15.817 ±1.063	1.061 ±0.495	-	25.021 ±3.309
۸ _b	22.224	30.313	14.518	26.729	40.840
	±0.110	±0.134	±0.186	±3.322	±0.3915

$Z \rightarrow c\bar{c}$ Effective Tagging Power with Uncertainty

Total Effective Tagging Power = $(30.116 \pm 0.022)\%$

% cbar jet → c jet ↓	Dºbar	D-	D₅⁰bar	∧ _c -
D0	27.184	30.702	22.353	35.202
	±0.098	±0.062	±0.144	±0.200
D+	30.644	33.779	25.816	37.813
	±0.062	±0.039	±0.093	±0.124
D _s 0	22.287	25.670	18.006	30.236
	±0.144	±0.093	±0.204	±0.298
∧ _c +	35.135	37.930	29.543	42.924
	±0.200	±0.124	±0.295	±0.395

Correlation of b jet and \bar{b} jet

σ bbar jet → b jet ↓	Bo	B+	B _s 0	B _c +	∧bar	
B ⁰ bar	12.475	11.195	4.459	0.612	0.069	$\sigma = \frac{Residual}{Uncertainty}$
B-	11.216	11.930	3.359	0.670	1.456	
B₅⁰bar	1.424	2.830	0.749	-0.185	4.988	
B _c -	-0.658	-0.598	-0.181	0.200	0.537	
۸b	0.848	0.829	3.774	0.537	5.644	