

Status of GRPC, gas flow simulation R&D

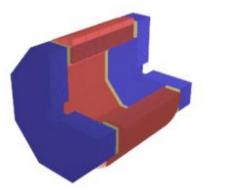
LAGARDE François

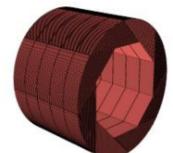
(Shanghai Jiao Tong University) On behalf of SDHCAL Study Group

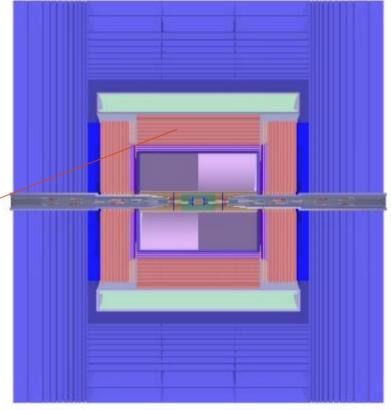
> CEPC Meeting September 29, 2021

Outline

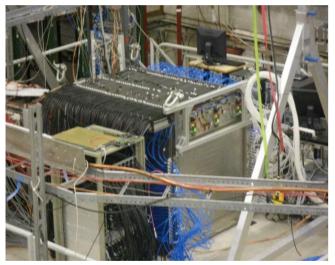
Introduction


Sas flow simulation for GRPC


- GRPC performance tests
- Summary


Introduction

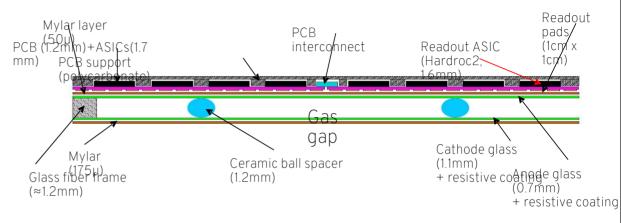
- ILD CEPC Detector
- CEPC SDHCAL(Semi-Digital Hadron Calorimeter) Tota ~100m3 4-40 millions channels


Figure 5.16: Schematic of the CEPC HCAL layout in its baseline design (left) consisting of one cylindrical barrel (red) spanning from 2058 mm to 3144 mm radially and two endcaps (blue) between 2650 mm and 3736 mm in |z|. An isometric view of the barrel HCAL is shown on the right.

Baseline detector

SDHCAL prototype

Size : 1m*1m*1.3m Nbr layers : 48 of RPC Cell Size : 1cm*1cm



(0. $12\lambda_I$, 1. $14X_0$)

Stainless steel Absorber(15mm)

Stainless steel wall(2.5mm) **GRPC(6mm** $\approx 0 \lambda_I, X_0$) Stainless steel wall(2.5mm) 3 mm RPC (glass) 1.2 - 1.4 mm PCB 1.6 mm ASIC

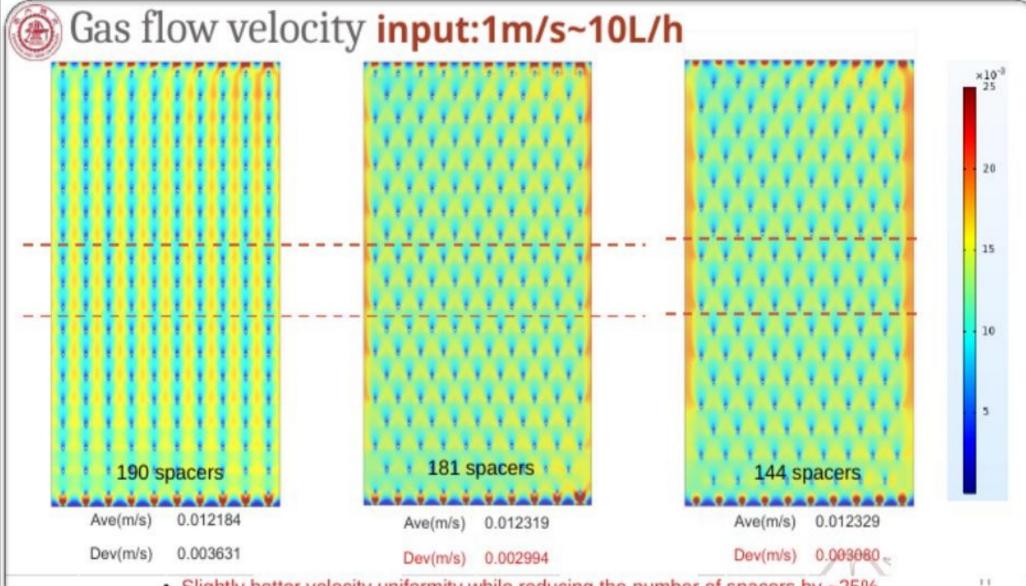
ASIC HARDROC (64 ch) 3-threshold: 110fC, 5pC, 15pC

Gas flow simulatio for GRPC

Gas flow has a strong impact on the homogeneity, efficiency of the RPC.

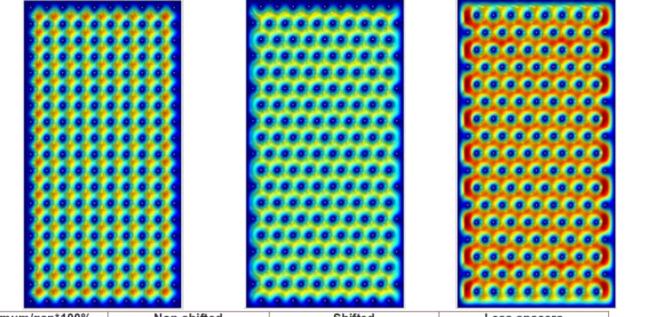
- \rightarrow The biggest the chamber, the most critical it's become.
- → For large GRPC 1820mm x 990mm.
- \rightarrow Using COMSOL Multiphysics 5.4 to simulate gas flow/electric field.

Total size : 1820mm x 990mm x 1mm Number of spacers : 19 x 10 Spacer radius 5mm


8	8		0		0	.0	2	2	8	20	0		0	2	.0	8	8	9
0		0	0	۲	0	0	0	٠	0	0	0	Ŧ	0	0	0	٠	0	¢
	÷		e						÷	÷.	e.						÷	
0		8	0		0		0	٥			0	0		0	٥	۰	0	0
			0	3	0						0	a'			0	ø		0
o	a.	0	0		¢.	â		ò		ō.	¢.		¢.	ġ.	ő	ė		0
ñ	\widetilde{n}	$\frac{1}{2}$	ñ	(7 6))	a)	16	3	ñ	\widetilde{n}	Ř	$ \hat{R} $	140		<u> 74</u>	5	ñ		ñ
6	6	8	6		0		÷.	ò	8	8	161	10	0	6	6	÷	8	ŏ
ő	÷					50	÷	÷.	a.	63			6	4	÷.	÷	÷	
0	8		0		61		2		8	0			0	3	i de	0	8	0

, ,																												
			•		•		+		÷	•	•				•		•	,		•				*				Γ
		·	\mathbf{t}							22	•									*				8.8				
			÷.	\odot		\sim	$\tilde{\mathbf{x}}$		*							2			2	1	5	8 8						
									•		•					13		5						1				
		•	8	×	*		\mathbf{x}_{i}^{i}		÷		•							24	1	1	8.9	6 (*					
		•	•	÷	•	•	•		•	•	•					9						٠			•			
		•	÷	×	\mathbf{t}	\mathbf{x}		3	•	٠	•										0.0	6.5		٠				
			÷						٠						*			*		٠	٠	٠			•			
				\mathbb{R}^{2}	$\mathcal{T}^{(i)}$	\mathbb{R}^{n}	\sim		$^{\circ}$						•							6	•					
		•		3		1.	÷.		÷.		•					54			٠		٠				•			
		•	٠	٠	•				٠	٠	•				5		•	3	1		1		•	•				
V		•	•	*					÷							8		8		*				6 5	•			
Ť		•	٠	٠	•	•	•		٠	•	•				•	٠							*	*				
			•	×	*	\mathbb{R}	\mathbf{t}	.*	÷		•					19		0	•	×	٠			1	•			
		•	*	*	*		٠		٠	٠	•				•		•		,	•			•	٠				
			$^{\circ}$	8	20	(2,	*	12	$\mathbb{P}_{\mathbb{P}}^{2}$	1	•					- 23		к. 1	•	٠	٠			6.3	•			
	→x	•	*	2		10	٠		٠	٠	•				•	٠	•		13	2 .			•	•				
			٠	٠	•		•	•	٠	•	•					- 13			-10	J	٠			3	•			
		•	•	•	*	\cup	•	•	*	•	•				•	•	•	•	•	•			•	٠	_			L
	D	ista	nce	e(ci	m)								D	ista	nc	e(o	m)									Di	sta
	Spac	cer t	0 S	pac	cer(X)				9.9	1		Spac	cer	to s	spa	ice	r(x)				9.9)			Space	er
	Spac	cer t	o s	pac	cer(y)			ç	9.96	6		Spac	cer	to s	spa	ice	r(y)			g	9.9	6		 11	Spac	er
	Spa	acei	r to	wa	ll(x))			9	9.9/2	2		Spa	ace	r to	W	all(X)				9	.9/	2			Spa	ce
	Spa	acei	r to	wa	ll(y))			9	.96/	2			ace								9.	96	/2			Spa	
												- 1						-									_	

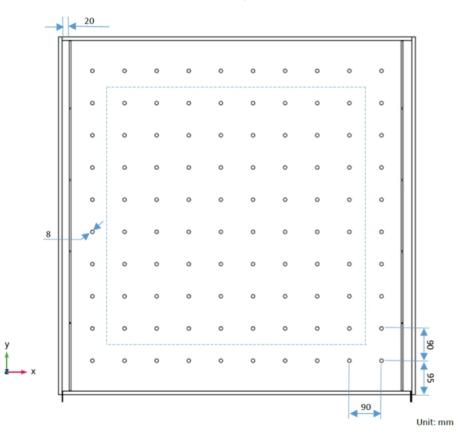
٠		•		•		٠		•		٠		٠		•		
											٠					
*		*		•		•		*		•		*		•		1
											•		•			
1		•		•		•		•		ł		•		•		2
			*								•				*	
•		•		•		•		1		2		*		*		2
			•		٠						•				•	
٠		٠		÷		*		٠		ł		٠		٠		2
	٠		٠		*		•		•		٠		•		•	
	•		•		•		•		•		•		•		•	
٠		٠				٠		٠		•		٠		٠		9
			•		*		•				*		•		٠	
*				*		÷	1	4	ļ			*		•		3
	•		1		•		-	1	•		٠		•		•	

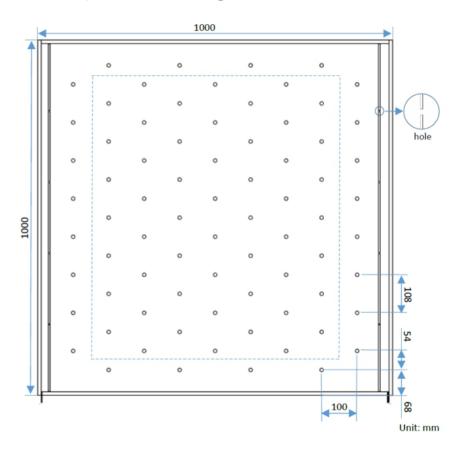

Distance(cm)	
Spacer to spacer(x)	10.1
Spacer to spacer(y)	10.6
Spacer to wall(x)	10.1
Spacer to wall(y)	10.6

Slightly better velocity uniformity while reducing the number of spacers by ~25%

Deformation due to pressure and electric field

Maximum/gap*100%	Non-shifted	Shifted	Less spacers	Thickness
Fluid(1 vol/h)+electrical	-0.245655%	-0.196048%	-0.296364%	of gas gap:
Electrical force	-0.248539%	-0.198346%	-0.300121%	1mm
Fluid(1 vol/h)	0.002298%	0.002884%	0.003757%	
Fluid(10 vol/h)	0.044475%	0.035548%	0.056712%	


By shifting the spacers and trying to keep the same deformation :


- Decrease the spacer number 190 \rightarrow 181 \rightarrow 144 (-25%)
 - More active region
 - Easier to build
 - Improve homogeneity

1m*1m gas flow simulation

Compare «Reference» and «shifted» spacers configuration.

1m*1m gas flow simulation

Compare «Reference» and «shifted» spacers configuration.

cm/s

0.1

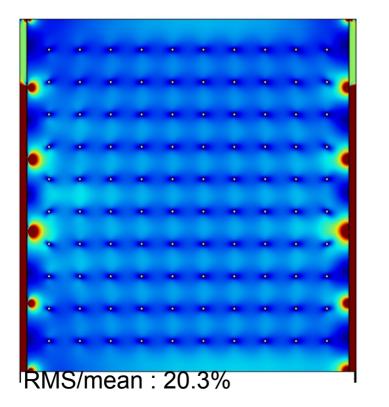
0.09

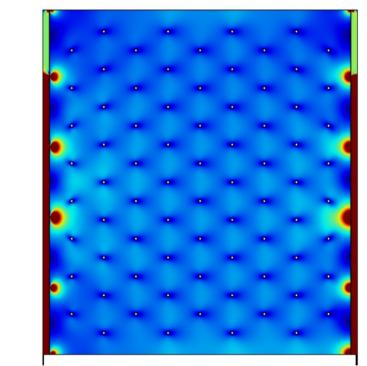
0.08

0.07

0.06

0.05


0.04


0.03

0.02

0.01

Velocity distribution

cm/s

0.1

0.09

0.08

0.07

0.06

0.05

0.04

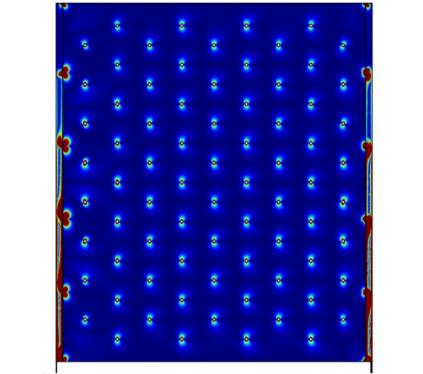
0.03

0.02

0.01

RMS/mean : 17.5%

The velocity is more uniform with the «shifted» design



۹	۰	٩	٩	•	٠	۰	•	•	e	
8 8	•	•	•	•	۰	۰	۰	۰	e	4
٩	•	•	•	•	•	۰	•	8	٥	
e e	•	8	•	•	•	۰	•	0	e	2
8	8	•	•	8	•	۰	•	8	۰	
8	8	٢	•	8	•	۲	8	8	ø	
s «	٥	8	•	•	۰	۰	•	8	8	
8	8	٥	•	8	•	۲	8	8	۰	
8 @	٥	٥	•	8	8	٩	8	8	8	4
٥	8	۰	۰	•	•	•	•	•	۰	

Vorticity

1/s

×10⁻³

1/s

×10⁻³

radius of 12 mm with respect to the spacer center

Mean vorticity around the spacer : 0.0199s⁻¹ Mean vorticity around the spacer : 0.0196s⁻¹ Mean vorticity remaining area : 0.0022s⁻¹ Mean vorticity remaining area : 0.0018s⁻¹ The vorticity is decreased in both area

Deformation of the gas gap

- 0.05000

- -1.130

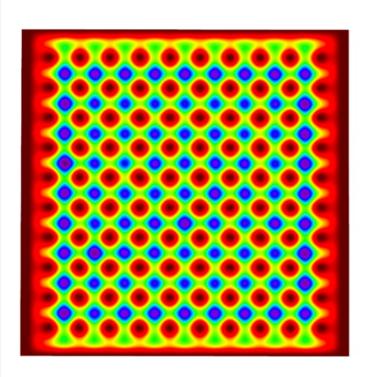
- -2.310

- -3.490

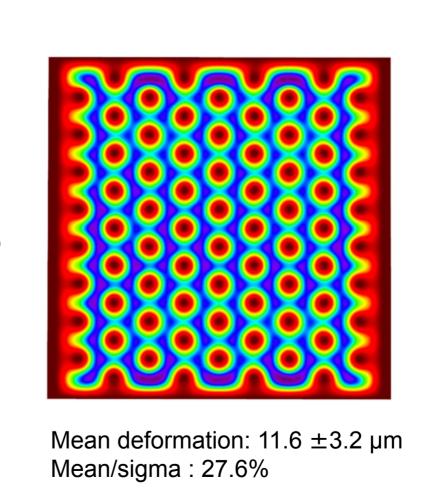
- -4.670

- -5.850

- -7.030


- -8.210

- -9.390


- -10.57

- -11.75

μm

Mean deformation: 6.5 \pm 1.9 μ m Mean/sigma : 29.0%

μm

0.05000

- -1.800

- -3.650

- -5.500

- -7.350

- -9.200

- -11.05

- -12.90

- -14.75

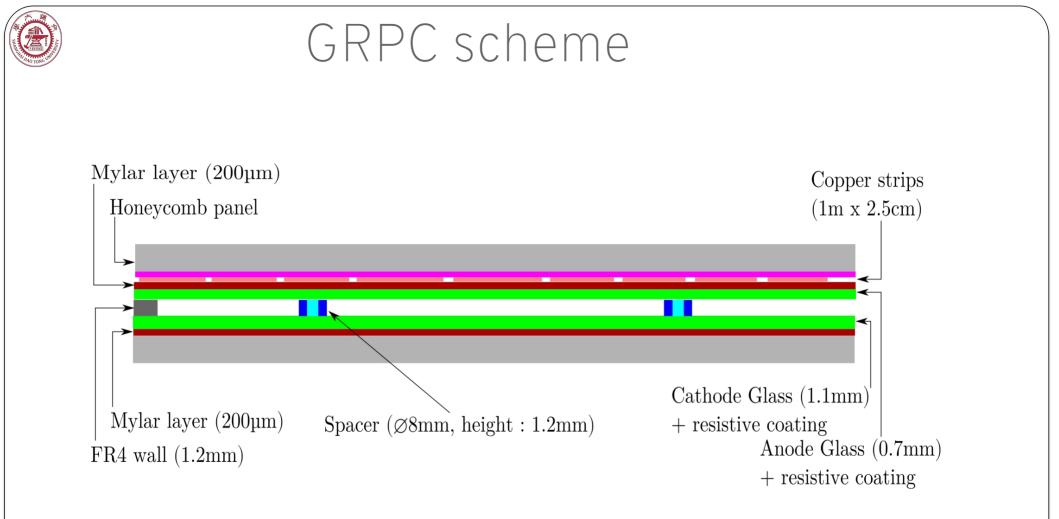
- -16.60

- -18.45

Better deformation uniformity

Summary for the simulations :

Model	"Reference spacers" RPC	"Shifted spacers" RPC
Mean velocity \bar{v}	$0.0238 (\text{cm s}^{-1})$	$0.0241 \ (\mathrm{cm} \mathrm{s}^{-1})$
RMS of velocity σ_v	$0.0049 (\mathrm{cm}\mathrm{s}^{-1})$	$0.0042 (\text{cm s}^{-1})$
σ_v/\bar{v}	20.3 (%)	17.5 (%)
Mean vorticity near spacers region	$0.0199 (s^{-1})$	0.0196 (s ⁻¹)
Mean vorticity excluding the vicinity of spacers	$0.0022 (s^{-1})$	0.0018 (s ⁻¹)
Mean deformation between gas gap \bar{d}	6.5 (µm)	11.6 (µm)
RMS of deformation σ_d	1.9 (µm)	3.2 (µm)
σ_d/\bar{d}	29.0 (%)	27.6 (%)

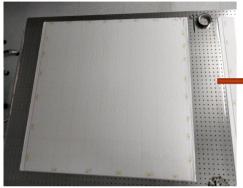

Table 1: Results from simulation.

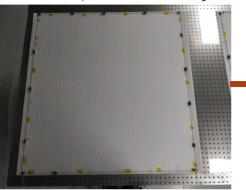
There is improvement on all the parameters :

- Increase on the mean velocity
- More uniform velocity
- More uniform deformation
- More active region
- Less vorticity
- More uniform vorticity

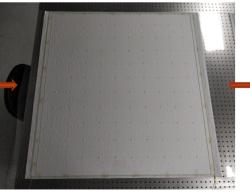
From construction perspective:

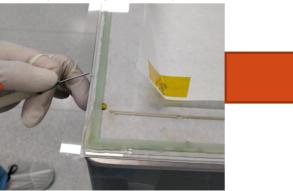
- Easier to build
- 25% less spacers




GRPC construction

Spacers positionning

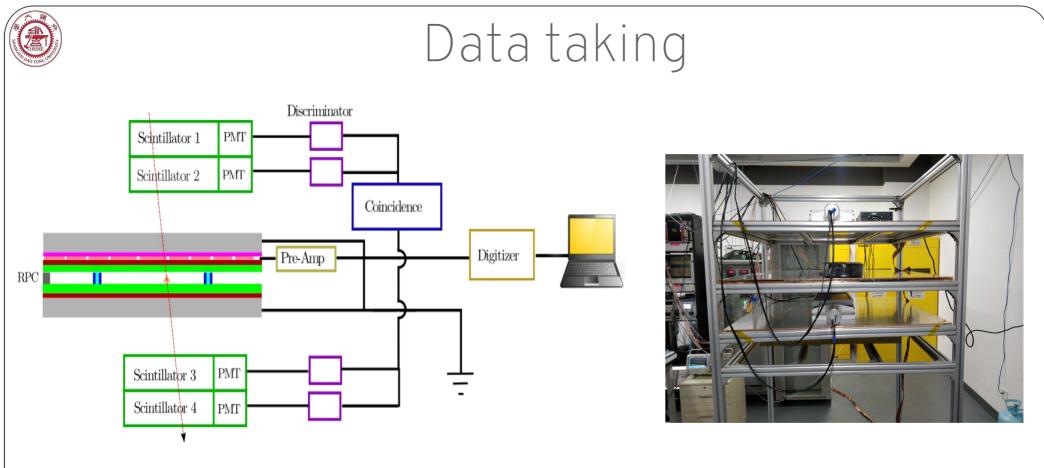

Cleaning


Walls positionning

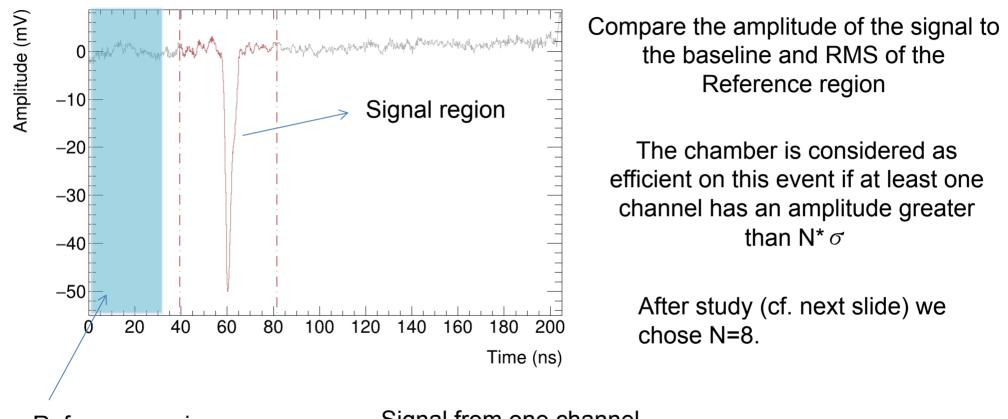
Flipping and 2nd glass positionning

2nd glass gluing gas tightning

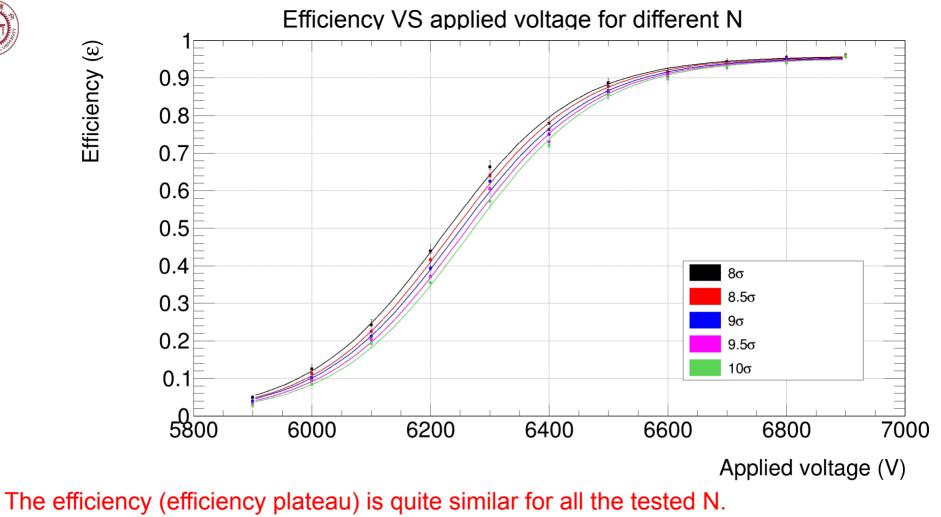
Walls/spacers gluing

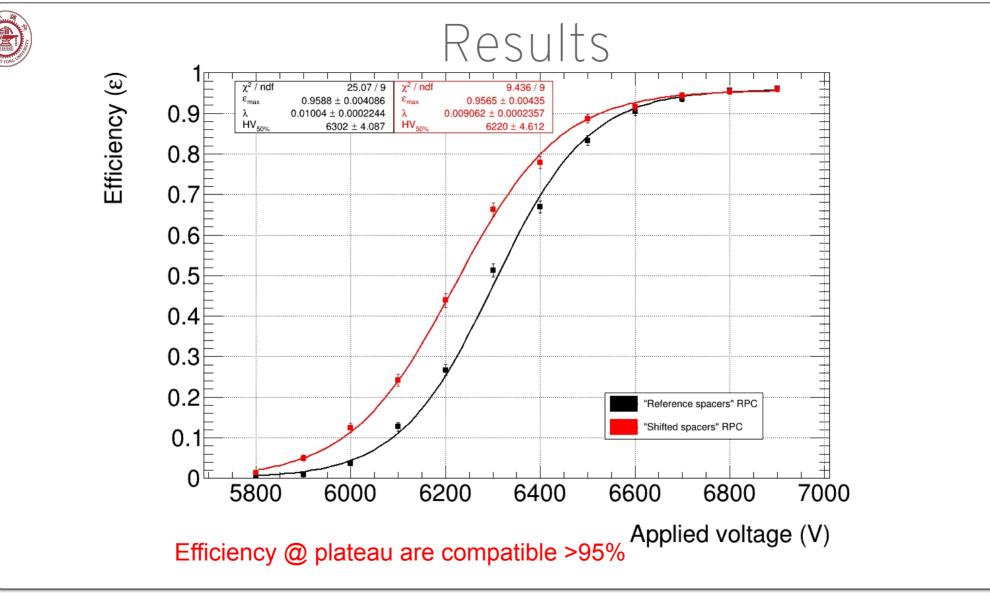


GRPC construction



Digitizer : CAEN V1712 5Gs/s


Data taking

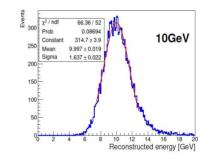

«Reference region»

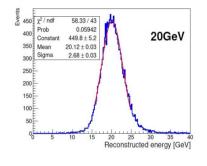
Signal from one channel

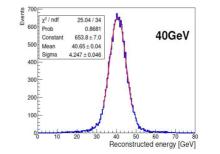
-> robustness of the muon detection against noise

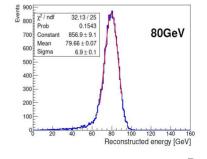
Gas flow simulation has been performed to improve the GRPC layout. Construction of GRPCs has been done on small (50cm*30cm) size and big size (1m*1m). The chambers fullfil the requirements for efficiency (>95%)

Thanks for your attention!

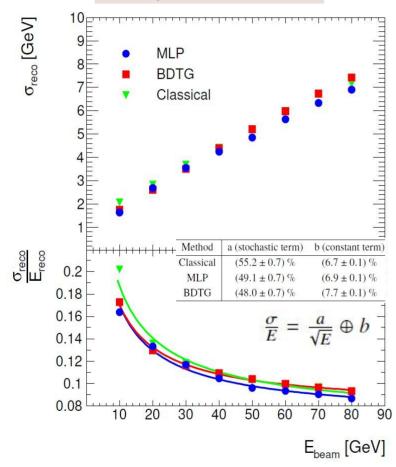

Backup

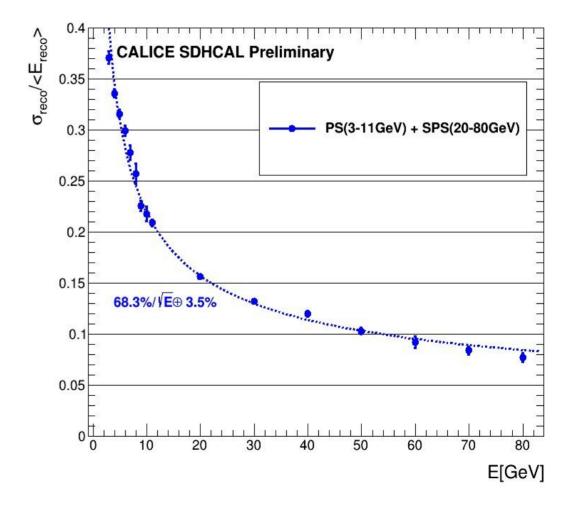

Performances with MVA

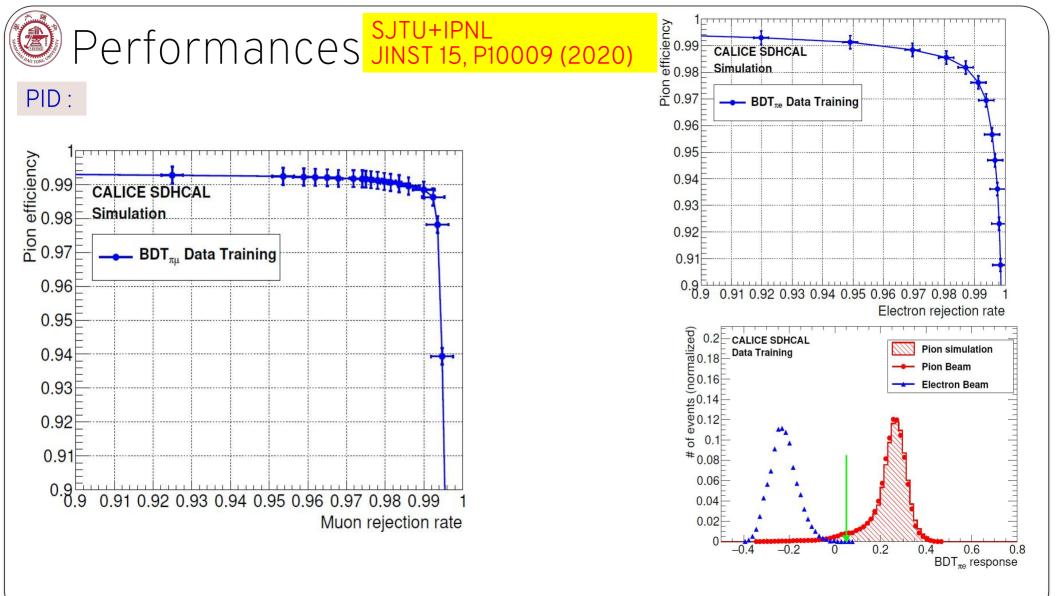

Energy linearity : 90 Ereco [GeV] 80 MLP 70 BDTG Classical 60 50 40E 30 20 10 -reco-E_{beam} Ebeam 0.04 0.02 -0.02 -0.04 80 90 10 20 30 60


SJTU+IPNL JINST 14, P10034 (2019)

Energy linearity improves from 3-4% to 1-2% level using MVA

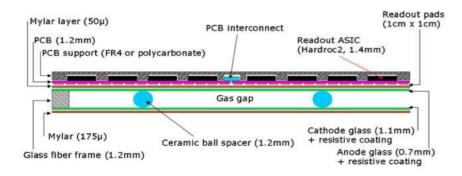


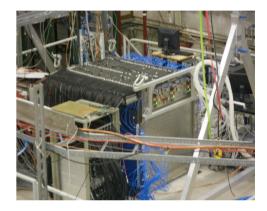




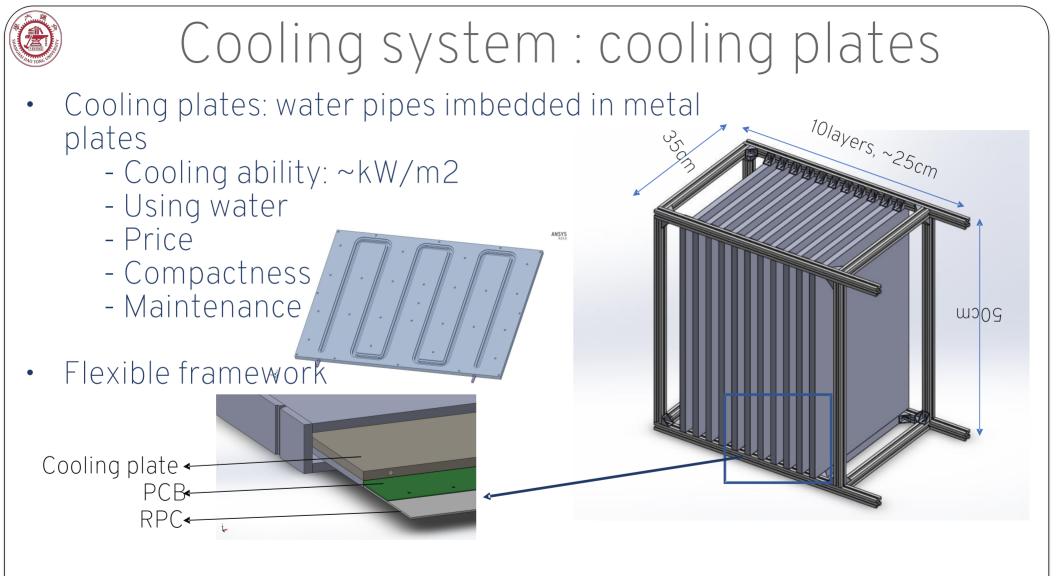
Performances with MVA SJTU+IPNL JINST 14, P10034 (2019)

Energy resolution :

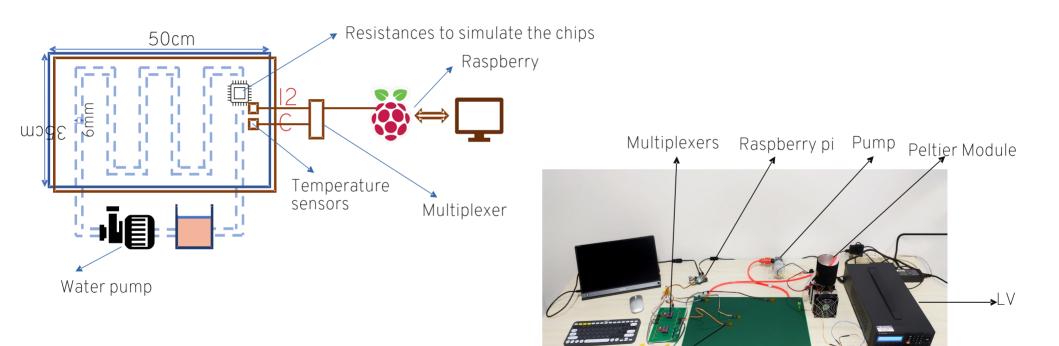

Introduction

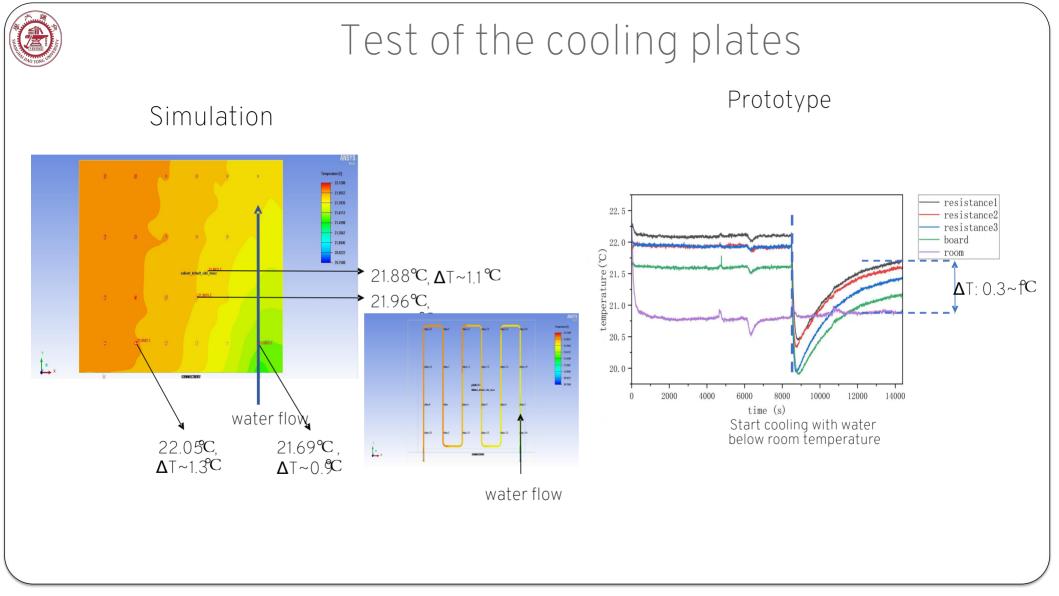

Why do we need a cooling system for CEPC SDHCAL?

- The new generation of detector will fully exploit the Particle Flow Algorithm :
 - \rightarrow Need high granularity detectors.
 - → Avoid cracks in the detectors.
- For SDHCAL :
 - \rightarrow 1×1cm² pads \rightarrow Over 60M channels \rightarrow HEAT !


The SDHCAL has been design for ILC and use the particular beam structure (collision rate \sim 5Hz) to switch off part of the its electronics.

For CEPC the collision rate ~1.5MHz (Higgs configuration) → Active cooling system.

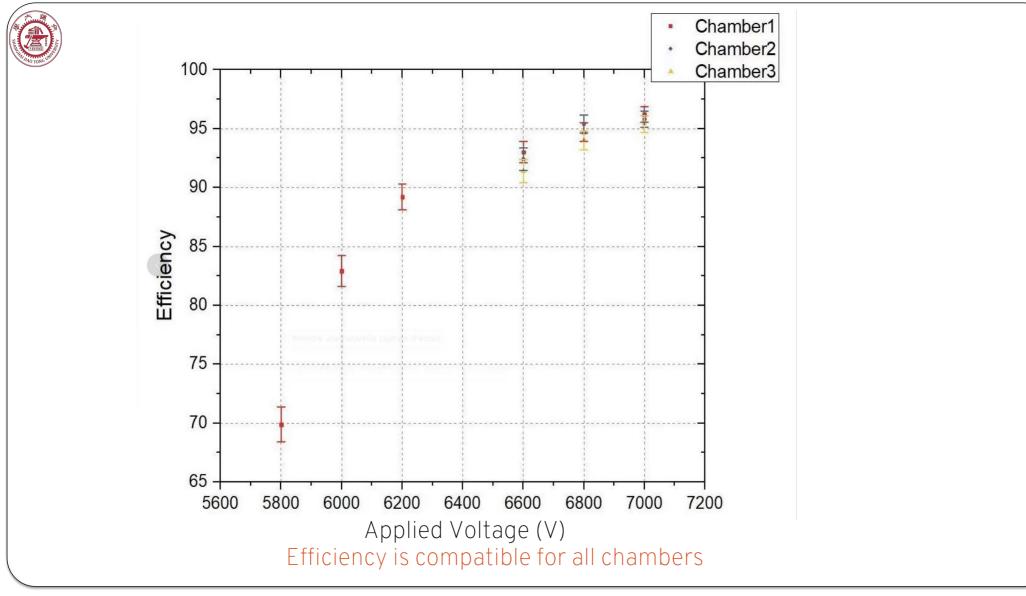




Test of the cooling plates

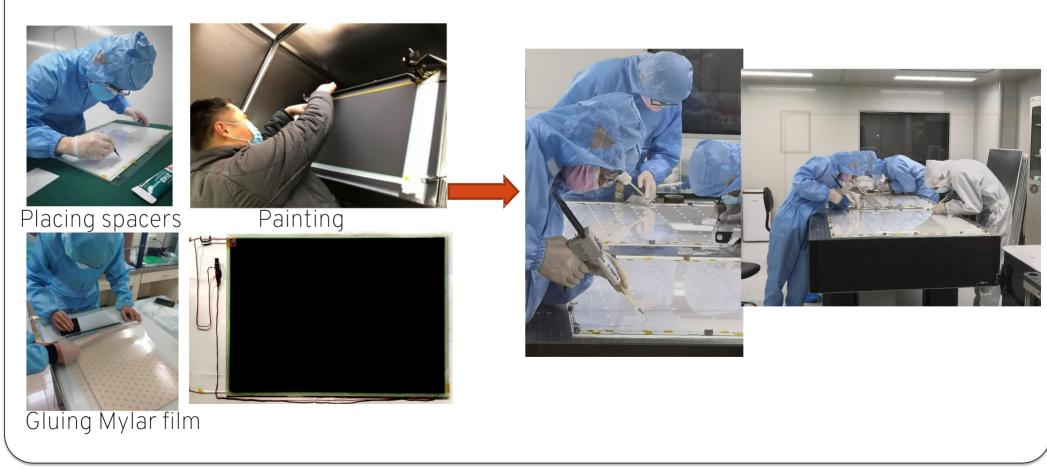
Sensors Cooling plate PCB

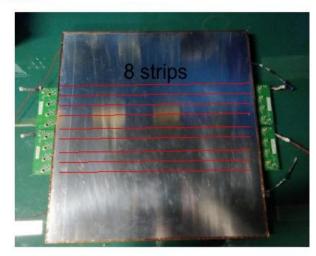
GRPC construction


Placing spacers

Printing

Mylar gluing

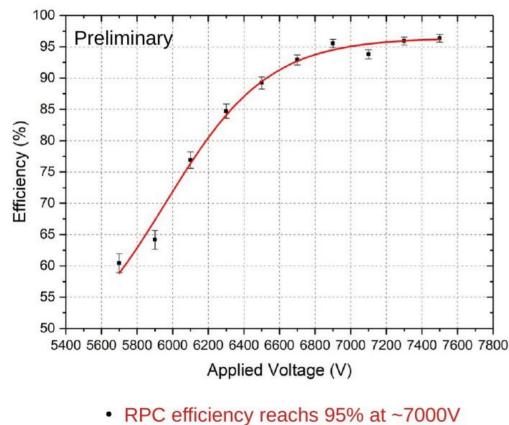



GRPC construction

30cm x 50cm Chambers

Building 1m x 1m GRPC

Testing the 50cm x 30cm chambers


USTC reference chamber

Cosmic stand

GRPC efficency using cosmic muons

~1000 muons / HV point.

	neneja Areno	Konjecianiani	5/15%-24-26-27-27-8		+provetovel
	maingros			weitereneren	manand
9710046		x2424.2424	J+162+342424946+	Q-245427242424045	vere-ereve ^l
popola and a		~2	оларананалал	useereereeree	risersens;
	, end a constant	n existence a	xonenchench	K. 249494527577756	eivensuets)
uanana.		Kananananan	онерененскехсн	16946454645454545454545	riconcend
5+3/4/4/4	و و رو دو دو و او دو د				révouerord
Ever	n trigge	ered w	ith sign	al in char	nber

	بنصفاتك أتحمد وينعي	and a star and a second
	رو بحونه ويورون	aaaaaa
	vanan di di sentai	
ханокаланалаларыныналарын өрстөнөн өнөнөнөнөнөрүгү	vonavaronavan	and and a second second
ciclesiciesesicies,cretesionaecumeresesicies,cmencies,cm	ALLANG SVEVEN	ianjale nam
	a a a a a a a a a a a a a a a a a a a	121202024
	varanananan	a suburu