

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

High-granularity Crystal Calorimeter: PFA performance studies

Yong Liu (Institute of High Energy Physics, CAS), on behalf of the CEPC Calorimetry Working Group

CEPC Day October 29, 2021

Motivations

- Calorimetry for future lepton colliders (e.g. CEPC, etc.)
 - Precision measurements with Higgs and Z/W
 - Jet energy resolution requires better than $30\%/\sqrt{E_{jet}(GeV)}$
 - Particle flow paradigm: high-granularity calorimetry
- Why crystal calorimeter?
 - Homogeneous structure
 - Optimal EM energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - High sensitivity to low energy particles
 - Capability to trigger single photons
 - Precision γ/π^0 reconstruction: flavour and BSM physics
 - Finely segmented crystals: PFA capability for jets (3~4% resolution)

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- A natural design compatible with PFA
 - Fine segmentation in Both longitudinal and transverse
 - Single-ended readout with SiPM

2021/10/28

Design 2: long bars

- Long bars: 1×40cm, double-sided readout
 - Super cell module: 40×40cm
 - Crossed arrangement in adjacent layers
 - Fine longitudinal granularity
- Save #channels and minimize dead materials
- Timing at two sides: positioning along bar

CEPC Day

High-granularity crystal ECAL: 2 major designs

Design 1: short bars

- Focus on <u>PFA performance</u> studies
- Crystal cubes (ideal granularity) for physics benchmarks

2021/10/28

• Inputs for optimization of the existing PFA for crystals

Design 2: long bars

- Focus on <u>new reconstruction algorithm</u> development
- Key issues
 - Separation capability of multiple incident particles (resolving "ghost hits")
 - Impact to PFA performance

CEPC Day

Outline: recent progress on crystal calorimeter

- Updates since the CEPC Day in July 2021
- PFA performance studies
 - Investigation of shower patterns with crystals: improvements in Arbor-PFA
 - Separation power with 2 incident particles: γ/γ and π^+/γ
 - Higgs benchmark with 2 jets: $ZH(Z \rightarrow \nu\nu, H \rightarrow gg)$
- New reconstruction algorithm dedicated to the design with long crystal bars
 - Details in the next talk (by Dr. Shengsen Sun)

Introduction: crystal calorimeter for PFA

- Key performance: jet energy resolution $< 30\%/\sqrt{E_{jet}(\text{GeV})}$
- PFA paradigm for jet reconstruction
 - Typical components in a jet
 - ~62% charged particles (mostly hadrons): tracker
 - Matching tracks and clusters in calorimeters (essential)
 - 27% photons: ECAL
 - 10% neutral hadrons: ECAL+HCAL
 - ~1% neutrinos
- Categorize component combinations
 - Most common: 1 charged + 1 neutral, or 2 neutral particles
 - Need to evaluate how well these particles can be "correctly" separated
- Full simulation studies with "CEPCv4" geometry and ArborPFA

Components of jets at Z-pole

Same granularity: SiW and crystals $(1 \times 1 \text{ cm}^2 \text{ transverse size}, 28 \text{ longitudinal layers})$

CEPC Day

6

Separation power with Arbor-PFA (reminder)

Performance studies: crystal ECAL + ArborPFA

- Impacts of energy threshold (in digitization)
 - Shower profile (visual impressions)
 - Hit-level analysis (quantitative)
 - Separation efficiency
 - Energy linearity
 - Single photon energy resolution
- Comparison of separation power: SiW vs Crystal
 - $\gamma/\gamma \& \pi + /\gamma$ separation efficiency
- Higgs benchmark ZH ($Z \rightarrow \nu \nu$, $H \rightarrow gg$)

Impacts of energy threshold: shower profile

- Event display with neutral hadrons (10 GeV Kaon0L)
 - Hits (digitised) in calorimeters: displayed in purple

Baohua Qi (IHEP)

Molière radius:

- Shower profiles: significantly wider in crystals than SiW, and more "isolated" hits
- Lower energy threshold: too many hits → wider shower profile → more vague shower boundaries → more challenging to distinguish
- Hints: higher energy threshold can reduce the shower size and #hit

Impacts of energy threshold: hit-level analysis

Dan Yu (IHEP)

- As energy threshold increases, #hit decreases exponentially
- More late hits (mostly with low energy) in crystals compared to SiW

• Time information can help further remove late hits (e.g. back-scattering neutrons)

Impacts of energy threshold: separation efficiency

Separation of two gammas Sketch of ECAL in r-z plane $\gamma_A \gamma_B$ IP

- Two gammas (5GeV): varying distance
- Efficiency definition: successful reconstruction of at least 2 neutral particles, both in 3.3GeV<E<6.6GeV
- Removed events with γ-conversion before entering ECAL
- Applied energy calibration

- Crystal ECAL: optimise energy threshold in digitization
- Higher energy threshold leads to better separation power
 - More compact showers, less vague boundaries

۲

Baohua Qi (IHEP)

Impacts of energy threshold: separation efficiency

Baohua Qi (IHEP)

Separation of a gamma and a charged pion

Sketch of ECAL in r-z plane

- 10GeV π^+ and 5GeV γ : varying distance
- 3 T magnetic field
- π^+ momentum measured by tracker
- Efficiency definition: successful reconstruction of 3.3GeV<E_N<6.6GeV, 9.9GeV<E_c<10.1GeV
- Removed events with γ/π^+ interactions before entering ECAL
- Applied energy calibration
 - Higher energy threshold leads to better separation power
 - Hadronic showers show more complicated patterns
 - Separation efficiency is also affected by

2021/10/28

Clustering algorithm, matching of tracker and clusters in calorimeters

Yong Liu (liuyong@ihep.ac.cn)

Distance / mm

Baohua Qi (IHEP)

- Increasing energy threshold (in digitisation)
 - Degrade the energy linearity, especially in low energy region (e.g. <10 GeV)

Energy sum of hits (after digitization)

Note: energy threshold in digitization is like signal threshold in detector hardware Schemes of two different thresholds: one for hardware (adequately low), and the other for PFA (relatively high)

Impacts of energy threshold: single photon energy resolution Baohua Qi (IHEP)

Energy Resolution with single photons Single gamma Energy Resolution Single gamma Energy Resolution % 0.9F Energy Resolution / Energy Resolution / 1.6 0.8 1.5 1.4 0.6 1.3 0.5 1.2 0.4 1.1 Crystal: PFO Level **Crystal: Hit Level** 0.3 0.2 2 2 Threshold / MeV Threshold / MeV

- PFO energy resolution: including contributions from clustering algorithm
- Crystal ECAL shows significantly better energy resolution
 - Single photon resolution ~1% with 2 MeV threshold on PFO level

Comparison of separation power: crystal vs SiW

Baohua Qi (IHEP)

- Two gammas (5GeV): varying distance
- Efficiency definition: successful reconstruction of at least 2 neutral particles, both in 3.3GeV<E<6.6GeV
- Removed events with γ-conversion before entering ECAL
- Applied energy calibration

gamma/gamma Separation Efficiency

Threshold: SiW 50keV (~0.36MIP), crystal 2MeV (~0.26MIP)

Crystal: distance 50 mm successfully reconstructed

- Using optimized ArborPFA and parameters (details in backup)
- Similar separation performance achieved in two ECAL options: crystal and SiW

Comparison of separation power: $\pi + / \gamma$

Separation of a gamma and a charged pion

- Using optimized ArborPFA and parameters (details in backup)
- Separation performance: crystals not as good as SiW, esp. within 10cm
 - Still limited by the track-calo matching: pattern recognition

Failure in track-calo matching: cluster of photon (left) was wrongly absorbed into the cluster of π^+ (right), the energy of photon would be lost

- 10GeV π⁺ and 5GeV γ: varying distance
 3 T magnetic field
- π^+ momentum measured by tracker
- Efficiency definition: successful reconstruction of 3.3GeV<E_N<6.6GeV, 9.9GeV<E_c<10.1GeV
- Removed events with γ/π^+ interactions before entering ECAL
- Applied energy calibration

CEPC Day

Higgs benchmark studies: reminder

- 2-jet benchmark events in $ZH (Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV
- Reminder: results presented at Yangzhou Workshop (Apr 2021)
 - "Turn-key" configuration in ArborPFA, not optimised for crystals

CEPC Day

DRUID, RunNum = 0, EventNum =

Higgs benchmark *ZH* ($Z \rightarrow \nu\nu, H \rightarrow gg$)

- 2-jet benchmark events in *ZH* ($Z \rightarrow \nu\nu, H \rightarrow gg$) at 240 GeV
- With updated parameters in ArborPFA
 - Parameters being optimised in reconstruction: energy threshold (in digitization), "Bush-Connect" parameters, ...
- Significant improvement in BMR: from 4.5% to 4.0%
- Still potentials to be explored with precision information from crystals: e.g. energy and timing

Ongoing studies and plans

- Updates implemented in ArborPFA
 - New: application of energy information
 - "Hardware" threshold: low enough for better energy linearity
 - "Software" threshold: high enough for better separation power in ArborPFA
 - Results will be updated accordingly
- Impacts from crystal granularity to PFA performance
 - Vary the granularity, especially the transverse
 - Guided by physics performance (separation efficiency, BMR, etc.)
 - Trying to converge, with inputs extracted from reconstruction performance of long crystal bars
- Hardware: crystal and SiPM
 - Updating the test stand: to improve coupling stability, repeatable precision; test more SiPMs
 - Synergies with high-density scintillating glass R&D

Summary

- Steady progress to address key issues
- PFA performance studies with crystals
 - To use energy and time information in ArborPFA
 - Separation power of close-by particles
 - γ/γ separation: crystal shows similar performance to SiW
 - $\pi + /\gamma$ separation: significantly improved performance of with crystals, but also limited by track-calo matching
 - Higgs benchmark studies
 - Improvements with the updated ArborPFA
 - Detector with crystals: BMR achieved 4% for $H \rightarrow gg$ (previously 4.5%)

Thank you!

Backup slides

CEPC Day

Physics benchmark with two photons in final states

- Full simulation studies with $ZH(Z \rightarrow \nu\nu, H \rightarrow \gamma\gamma)$ at 240 GeV
- Updates: identified impacts of the geometry boundaries

Gaps in the barrel ECAL (octaves)

Simulated Hit Map

Excluding hits near gaps

Zhiyu Zhao (IHEP/SJTU)

Performance studies: neutral pions with Arbor-PFA

Zhiyu Zhao (IHEP/SJTU)

- Reconstruction of π^0 in crystal ECAL: invariant mass and its resolution
 - Single π^0 's generated by the particle gun

 π^0 invariant mass resolution: dominated by EM resolution in lower energy region and in higher energy by angular resolution

• Hit level: missing low energy hits will affect the response at low energy part

• PFO level: insufficiency of clustering will lower the response at high energy part

0

γ/γ Separation: optimization

- Change threshold in digitization ٠
- Comparison of different parameters ۲

Two 5GeV γ , vary distance Absolute energy calibration applied manually Success reconstruction: $3.3 \text{GeV} < \text{E}_{\gamma} < 6.6 \text{GeV}$ Events that γ decays in tracker removed

100 Low threshold: <100% 80 FhreE 50keV Cali 1 1 Slope0.05 ThreE 500keV Cali 1 1 Slope0.05 Value30 ThreE 1MeV Cali 1 1 Slope0.05 Value30 ThreE 2MeV Cali 1 1 Slope0.05 Value30 60 ThreE 3MeV Cali 1 1 Slope0.05 Value30 ThreE_4MeV_Cali_1_1_Slope0.05_Value30 ThreE 5MeV Cali 1 1 Slope0.05 Value30 40 20 50

100

gamma/gamma Separation Efficiency

Distance / mm Crystal: Slope 0.05, Value 30

150

200

250

gamma/gamma Separation Efficiency

ัก

$\pi + \gamma$ Separation: optimization

pi+/gamma Separation Efficiency

- Change threshold in digitization ٠
- Comparison of different parameters ۲

10GeV π^+ and 5GeV γ , 3T magnetic field, vary distance Absolute energy calibration applied manually Success reconstruction:

 $3.3 \text{GeV} < \text{E}_{\nu} < 6.6 \text{GeV}, 9.9 \text{GeV} < \text{E}_{\pi+} < 10.1 \text{GeV}$ Events that π^+/γ decays in tracker removed

pi+/gamma Separation Efficiency

CEPC Day

Study on hit level optimization

• SiW: hit number study with 5 GeV γ

Neutral pion reconstruction: crosscheck with MC truth

Impacts to Higgs mass resolution: reminder

Yuexin Wang (IHEP)

- Full simulation with SiW-ECAL via the benchmark Higgs to 2 gluons
 - 10 longitudinal layers or more in ECAL can help achieve better than 4% of BMR
 - Expect small impact from ECAL intrinsic energy resolution (PFA fast simulation)
- Guidance for the longitudinal segmentation
 - Will perform more benchmark studies for crystal ECAL in the CEPC detector simulation

Considerations on detector layouts

Layout 1: same module for each layer

- Pros
 - Modular design
 - Uniform structure (easy calibration)
- Cons
 - Material budgets (cooling, mechanics)

Layout 2: every two layers share the same cooling service and mechanics

- Save material budget (e.g. a factor of two)
- Cons
 - Non-uniform sampling structure: will need specific considerations for calibration

Studies on physics requirements

- Estimate the multiplicity level of jets: fast simulation
 - Detailed studies with 2 incident particles (from a jet) hitting the hottest tower

CEPC Day

→aa

Yuexin Wang (IHEP)