

Reconstruction algorithm for ECAL

Sun Shengsen on behalf of CEPC ECAL software group CEPC Day, Oct. 28th 2021

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

Introduction

- High precision Higgs / Z factory:
 - Requiring excellent jet energy resolution (3~4%) for W/Z separation and precise Higgs measurement.
 - Fine γ/π^0 separation for flavor physics study.
- Particle-Flow Approach (PFA):
 - Measure jet by its components: 60% charged particles, 30% photons, 10% neutral hadrons.
 - Final resolution:

$$\sigma_{Jet} = \sqrt{\sigma_{Track}^2 + \sigma_{Had}^2 + \sigma_{em}^2 + \sigma_{Confusion}^2}$$

Component	Detector	Energy Fraction	Energy Resolution	Jet Energy Resolution
Charged Particles (X^{\pm})	Tracker	~0.6 <i>E</i> _J		—
Photons (γ)	ECAL	~0.3 <i>E</i> _J	0. 15 $\sqrt{E_{\gamma}}$	$0.08\sqrt{E_J}$
			$0.03\sqrt{E_{\gamma}}$	$0.016\sqrt{E_J}$
Neutral Hadrons (h^0)	HCAL	$\sim 0.1 E_J$	$0.55 \sqrt{E_{h^0}}$	$0.17 \sqrt{E_J}$

Jet E res.	W/Z sep	
perfect	3.1 σ	
2%	2.9 σ	
3%	2.6 σ	
4%	2.3 σ	
5%	2.0 σ	
10%	1.1 σ	

Introduction

- PFA requirement: Hardware + Software
 - Distinguish showers in calorimeter ⇒ high granularity ECAL/HCAL.
 - Minimize transverse spread of EM shower \Rightarrow small Moliere radius R_M
 - \Rightarrow SiW sampling ECAL in ILD.
 - Separate EM and Hadronic showers longitudinally \Rightarrow large λ_I/X_0 ratio.
- Crystal ECAL:
 - Homogeneous structure \Rightarrow energy resolution $\sim 3\%/\sqrt{E} \oplus 1\%$.
 - Energy recovery for electrons.
 - Capability to trigger single photons \Rightarrow precise γ/π^0 reconstruction.
 - Larger Moliere radius ⇒ larger probability of shower overlap.
 - Smaller $\lambda_I / X_0 \Rightarrow$ larger probability of hadronic shower in ECAL.
 - Exploit energy information and 3-D profile of shower

Material	X_0 /cm	R_M /cm	λ_I /cm	λ_I/X_0
W	0.35	0.93	9.6	27.4
BGO	1.12	2.23	22.8	20.3
Ratio	3.2	2.4	2.4	0.74

Introduction

- Crystal bar ECAL
 - Homogeneous BGO crystal.
 - Size: $1 \times 1 \times \sim 40 \text{ cm}^3$, double-sided readout.
 - Super cell module: $\sim 40 \times \sim 40 \times 2 \text{ cm}^3$.
 - Time measurement at two ends for position along the bar.
 - Crossed arrangement in adjacent layers.
 - Save readout channels and minimize dead materials.
 - Full detector: R = 1.8m, L = 4.6m, H = 28cm, 8 same trapezoidal staves.
- Key issues:
 - Ambiguity caused by 2D measurement (ghost hit problem).
 - Identification of energy deposits from individual particles (confusion).

Simulation and digitization

- Standalone ECAL geometry in CEPCSW
- Simulation is performed with GEANT4
 - Electromagnetic interactions.
- Simple digitization for one long crystal bar:
 - Readout information: 2-end Q and T.
 - Contribution from G4step i:

$$Q_{\pm}^{i} = E_{0} \cdot e^{-\frac{L_{\pm}z_{i}}{L_{Att}}}, \quad T_{\pm}^{i} = T_{0} + Gaus(z_{\pm}^{i}/v, \sigma_{T}).$$

• For the full bar:

$$Q_{\pm} = \sum_{step} Q_{\pm}^{i}$$
, $T_{\pm} = T_{\pm}^{k} \mid \left(\sum_{i=1}^{k} Q_{\pm}^{i} > \epsilon Q_{\pm}^{tot}\right)$, $\epsilon = 5\%$.
Simplified condition: $L_{Att} = \infty$, so $Q_{\pm} = E_{tot}$.

Reconstruction flow

- Reconstruction algorithm V0:
 - Iteration 0: roughly reconstruct clusters to remove the fluctuations.
 - Iteration 1:
 - 1D energy splitting.
 - 2D matching & ghost hits removal in each layer (X-Y plane). (chi2)
 - 3D cone clustering longitudinally.
 - Cluster ID
 - ID efficiency & mis-ID rate.
 - Re-cluster MIP/EM/Had showers.
 - Merge clusters.

Reconstruction: 1D

Clustering and splitting in each layer:

- Readout from detector: crystal bars (energy + time).
- Clustering:
 - Neighbor clustering.
 - Find local maximum and seed candidate.
- Energy splitting:
 - $N_{seed} \ge 2$ and second moment $S > S_{th}$ (0 for now).
 - Calculate the expected energy deposition of shower μ in bar *i*: $E_{i\mu}^{exp} = E_{\mu}^{seed} \times f(|x_i - x_{\mu}|).$
 - Split bar i energy with expected value

 \rightarrow Solve the overlap issue from large R_M .

Reconstruction: 2D

Matching the crossing bars in 2 adjacent layers:

- Define a χ^2 with both energy and timing: $\chi^2_{point} = \chi^2_E + (\chi^2_{Tx} + \chi^2_{Ty})/2 = \frac{(E_X E_Y)^2}{\sigma^2_E} + \Gamma$
 - $\left[\frac{(z_T z_X)^2}{\sigma_s^2 + \sigma_{z(t)}^2} + \frac{(z_T z_Y)^2}{\sigma_s^2 + \sigma_{z(t)}^2}\right]/2.$
- Reject the wrong combination with this χ^2 .

Reconstruction: 3D

- Longitudinal linking for 3D cluster:
 - Cone-based clustering algorithm.
 - Get the very preliminary 3D structure, identify the cluster (MIP/EM/Hadron) based on this result.
 - Re-clustering: reconstruct MIP/EM clusters first, and then reconstruct hadronic clusters with a large R threshold.

Performance

- Separation power:
 - Two 5 GeV γ shot in parallel, scan the distance.
 - At least 2 clusters, $|z_{rec} z_{truth}| < 5mm$, $|E_{rec} E_{truth}| < 2GeV$. $(E_{truth} = 5GeV)$

Performance

- Separation power:
 - 10GeV π^- and 5 GeV γ shot in parallel, no B field, scan the distance.
 - at least 2 clusters, $|z_{rec}^{\gamma} z_{truth}^{\gamma}| < 1cm$, $|z_{rec}^{\pi} z_{truth}^{\pi}| < 2cm$, $|E_{rec}^{\gamma} E_{truth}^{\gamma}| < 2GeV$. ($E_{truth} = 5GeV$)

Reconstruction: scheme V1

- Use tracker idea in ECAL reconstruction: Hough transformation.
 - Consider from the simple case: EM shower core, no magnetic field.
 - Only use first 8 layers to avoid the shower in EM tail and complex hadronic shower.
 - Fit a "ECAL track" and match it with "tracker track". Details are still undergoing.

Summary

- Developing a new PFA software for crystal ECAL:
 - Traditional PFA: fine granularity + small R_M + less hits (sampling) for separation.
 - Crystal PFA: precise energy (homogeneous) + shower profile for separation.
 - χ^2 method for ghost hit removal is very efficient. \Rightarrow Ghost hit problem \checkmark
 - Energy splitting shows potential for particle separation. \Rightarrow Confusion \checkmark \square
 - Hadronic shower could be identified and would not influence the EM particle reconstruction.
 - Considering another scheme: fit "ECAL track".
- Many details still need optimization:
 - Clustering efficiency,
 - Fragment absorption (cluster merging),
 - Cluster ID efficiency & mis-ID rate,
 - • •

Backup

Cluster ID

- Distinguish the MIP/EM/Had shower in crystal ECAL (after recon):
 - aveE: average energy in all layers.

For MIP

- stdDevE: standard derivation of energy in layers.
- L_{start} : shower start layer, with $E_{this \ layer} > 0.1 GeV (~3MIP)$.
- *L_{end}*: shower end layer.
- showerMax: maximum width of this shower.
- Alpha/Beta: fit longitudinal energy deposition with EM profile $\frac{\beta(\beta t)^{\alpha-1}e^{-\beta t}}{\Gamma(\alpha)}$, t is depth, α, β are fitted parameters.
- Chi2: χ^2/N_{dof} for this longitudinal profile fitting. For Had
- Considering a cut-based PID as the first step.

Cluster ID

100 events for each particle, 10GeV muon/photon/pion.

• In Gam sample: require E>8GeV to remove wrongly reconstructed clusters.

PID using lateral shape

For horizontal and vertical bars:

- Lateral moment $LAT = \frac{\sum_{i=3}^{N} E_i r_i^2}{\sum_{i=3}^{N} E_i r_i^2 + E_1 r_0^2 + E_2 r_0^2}$
- Second moment $SEC = \frac{\sum_{i=1}^{N} E_i r_i^2}{\sum_{i=1}^{N} E_i}$
- Energy of the energetic crystal *E*1
- Energy sum of 3×3 crystals E3
- Energy sum of 5×5 crystals E5

PID performance

- Confusion matrix
 - Iateral moment of super layer 5
 - laty < 0.4 && latz < 0.4 : MIP</p>
 - $laty \in [0.4, 0.9] \&\& latz \in [0.4, 0.9]$: EM
 - laty > 0.9 && latz > 0.9 :Had
 - others : LOSS

PID Truth 10GeV	MIP	EM	Had
MIP	0.975	0.01	0
EM	0	0.99	0.01
Had	0.44	0.1	0.275

Cluster ID

- Potential with BDT:
 - 6 input variables for training, EM vs. Hadronic cluster: L_{end} , $L_{maxWidth}$, L_{maxE} , E_{max} , width_{max}, α , β .
 - Training with BDTG:

NTrees=900:MinNodeSize=2.5%:BoostType=Grad:Shrinkage=0.06:UseBaggedBoost:BaggedSa mpleFraction=0.5:nCuts=20:MaxDepth=3

Performance

- Separation power:
 - Two 5 GeV γ shot in parallel, scan the distance.
 - At least 2 clusters, $|z_{rec} z_{truth}| < 5mm$, $|E_{rec} E_{truth}| < 2GeV$. $(E_{truth} = 5GeV)$

