
drift chamber
multithreaded simulation

with Gaudi Hive

Wenxing Fang (IHEP) Weidong Li (IHEP), Tao Lin (IHEP),
Jiaheng Zou(IHEP)

CEPC PhysDet meeting 2021.10.13

1

Motivation

2

❑ CEPC is a precise experiment

❑ Higgs, W, Z, …

❑ PID performance is important

❑ From previous study, the primary ionization counting (dN/dx)
method has potential to get very good PID performance (<3%
resolution)

❑ To prove that, the dN/dx method will be detailed studied for CEPC
drift chamber. Need precise dN/dx simulation

https://inspirehep.net/literature/1863539

Schema of dN/dx study in CEPCSW

3

DC Simulation

G4hit in drift chamber

DC Digitization

DC TrackerHit

Track reconstruction

(finding + fitting)

Track length (X)

TrackHeedSimTool

ionizations in drift chamber

Cell response sim

Signal waveform

Waveform reconstruction

N primary ionization

dN/dx each cell

dN/dx each track

dN/dx reconstruction

❑ Most time
consuming

❑ Using ML
method to
speed up

❑ Using multi-
threading to
speed up
further

𝑒1

𝑒2

Gaudi Hive

4

❖ Gaudi Hive: multi-threaded, concurrent extension to Gaudi

❖ Data Flow driven mechanism

⚫ Algorithms declare their data dependencies

◼ build a directed acyclic graph - can be used for optimal
scheduling

⚫ Scheduler automatically executes Algorithms as data becomes
available

❖ Algorithms process events in their own thread

❖ Multiple algorithms and events can be
executed simultaneously

❖ Algorithm Cloning

⚫ Multiple instances of the same Algorithm can
exist, and be executed concurrently, each for
different event

Example using dummy data object

5

❖ Performing the study using dummy data object

Ionized electrons

Cell response sim

Waveforms

A1:

Input=[]

Output=[‘EleObject’]#Ionized electrons

A2:

Input=[‘EleObject’]

Output=[‘WFObject_a2’]

partition=[0, 0.5]

A3:

Input=[‘EleObject’]

Output=[‘WFObject_a3’]

partition=[0.5, 1]

A4:

Input=[‘WFObject_a2’, ‘WFObject_a3’]

Output=[‘MergedWFObject’]#Waveforms

❖ Working well

Example using dummy data object

6

❑ Some configurations:

o evtslots = 3 #number of events run in parallel

o whiteboard = HiveWhiteBoard("EventDataSvc", EventSlots=evtslots)

o scheduler = AvalancheSchedulerSvc(ThreadPoolSize=8)

o A1.Cardinality = 2 # number of instance of A1 after setting isClonable=true

Example with podio input

7

❖ Read podio data as input

❖ As the HiveWhiteBoard is used for event data service instead of
PodioDataSvc. Currently, need create an algorithm to read podio
data. People from key4hep is working on merging HiveWhiteBoard
into PodioDataSvc

Example with podio input

8

❖ Read podio data as input and using edm4hep for EDM

❖ For this test, the edm4hep::SimTrackerHit is used for saving

information of ionized electrons. The edm4hep::TPCHit is used for

saving waveform information

A1:

Input_file=[‘DC.root’]

Output =[‘DCHIonizedEleCollection’]#SimTrackerHitCollection

A2:

Input=[‘DCHIonizedEleCollection’]

Output=[‘SingleWF_a2’]#TPCHitCollection

partition=[0, 0.5]

A3:

input=[‘DCHIonizedEleCollection’]

Output=[‘SingleWF_a3’]#TPCHitCollection

partition=[0.5, 1])

A4:

Input=[‘SingleWF_a2’, ‘SingleWF_a3’]

Ouput=[‘MergedWF_a4’]#TPCHitCollection
❖ Working well

Gaudi::Functional

9

❖ Most algorithms look like “some data in” -> “some data out”

❖ Standardize the common pattern of getting data our of the TES,
working on it, and putting it back in (in a different location).

⚫ Less code to write

⚫ More uniform code and easy to understand

⚫ Can be Re-Entrant, no need for clone, save memory

⚫ Multithreading friendly

❖ Patterns available:

⚫ Consumer, Producer, Filter, Transformer, MultiTransformer,
ScalarTransformer，…

Re-Entrant test

10

❖ Gaudi::Functional Re-Entrant test

❑ Gaudi::Functional is
re-entrantable

❑ The pytorch model
is re-entrantable

Using Gaudi::Functional

11

A1 = MakerIons("IonsProducer")

A1.OutputLocation="/Event/MyIons"

A2 = SimWF("SimA2")

A2.InputLocation="/Event/MyIons"

A2.OutputLocation="/Event/MySimA2"

A2.partition=[0 ,0.5]

A3 = SimWF("SimA3")

A3.InputLocation="/Event/MyIons"

A3.OutputLocation="/Event/MySimA3"

A3. partition=[0.5 ,1]

A4 = MergeWF("MergeWF")

A4.InputLocations=["/Event/MySimA2", "/Event/MySimA3"]

A4.OutputLocation="/Event/MyMergeWF"

Using Gaudi::Functional

12

❖ Using edm4hep data. Data can be accessed correctly. However, at the end of event, error

happens

Summary

13

❖ The Gaudi Hive is studied for multithreaded simulation of drift
chamber

❖ User defined or edm4hep format data is supported in Gaudi Hive

❖ Using Gaudi::Functional instead of Algorithm have been tried,
finding problems with edm4hep data, under investigation

❑ Future plan:

⚫ Try to write the output to root files

⚫ Combining with Geant4 simulation

⚫ Integrating with k4FWCore, maybe develop a multithreading version of
k4FWCore

⚫ Creating a prototype of CEPCSW based on GaudiHive

❑ Welcome to check the code:
https://github.com/wenxingfang/DCMTSim

https://github.com/wenxingfang/DCMTSim

14

Ionization and waveform simulation

17

G4 simulation

IonizationSimTool:

double dedx(const G4Step* Step)

Save ionized electrons info.

(x,y,z,t,cell_id, MC particle)

Into edm4hep::SimTrackerHit

Saved ionized electrons info.

For each electron:

simulating waveform vec<pair<(t,q)>>

Merge all the waveforms

from same cell

❖ Most time consuming part:
➢ Simulate waveform for each electron

➢ For one cell, ~ 100 electrons:
o Using Garfield++: ~250 s

o Using ML fast simulation: ~1 s

❖ CEPC drift chamber is ~100 layers, for one track ~ 100 s. Need

further speed up. Using multithreading or GPU technique.

CEPCSW for drift chamber

18

❖ Framework:

⚫ Gaudi

❖ EDM:

⚫ EDM4hep

⚫ FWCore

❖ Detector geometry and B field:

⚫ DD4hep

⚫ GeomSvc

❖ Drift chamber:

⚫ DC simulation (Geant4)

⚫ DC digitization

⚫ Track reconstruction (Genfit)

⚫ dN/dx simulation (Garfield++)

⚫ dN/dx reconstruction

