BSM resonance search in $H \rightarrow SS/Sh$ at the LHC

Yaquan Fang (IHEP) in Collaboration with Bruce Mellado (WIS/ICPP, South Africa) et al.

北京大学高能物理中心 Nov 13, 2021

Outline

- The 2HDM+S model
- H→Sh searches done so far
 - $H \rightarrow SS \rightarrow WW^*WW^* \rightarrow 2I, 3I, 4I$ (ATLAS)
 - $H \rightarrow Sh \rightarrow \tau \tau bb$ (CMS)
- Excesses on di-photon, Z-γ final states in association with leptons, b-jets, etc.
- The "multi-lepton anomalies"
- Proposal for further searches
- Impact on the search in future e+e- colliders
- Outlook and Conclusions

The simplified Model (from Run I)

- The hypothesis is the existence of a boson, H, that contains Higgs-like interactions, with a mass in the range 240-280 GeV
- In order to avoid large quartic couplings, incorporate a mediator scalar, S, that interacts with ^{QQ} the SM and Dark Matter.
- Dominance of H→Sh,SS decay over other decays

Eur. Phys. J. C (2016) 76:580

The 2HDM+S

Introduce singlet real scalar, S.

$$\begin{array}{ll} & \underline{\text{2HDM potential, }} \mathscr{V} \left(\Phi_{1}, \Phi_{2} \right) & \underline{\text{2HDM+S potential}} \\ & = m_{1}^{2} \Phi_{1}^{\dagger} \Phi_{1} + m_{2}^{2} \Phi_{2}^{\dagger} \Phi_{2} - m_{12}^{2} \left(\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right) \\ & + \frac{1}{2} \lambda_{1} \left(\Phi_{1}^{\dagger} \Phi_{1} \right)^{2} + \frac{1}{2} \lambda_{2} \left(\Phi_{2}^{\dagger} \Phi_{2} \right)^{2} \\ & + \lambda_{3} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) \left(\Phi_{2}^{\dagger} \Phi_{2} \right) + \lambda_{4} \left| \Phi_{1}^{\dagger} \Phi_{2} \right|^{2} \\ & + \frac{1}{2} \lambda_{5} \left[\left(\Phi_{1}^{\dagger} \Phi_{2} \right)^{2} + \text{h.c.} \right] \\ & + \left\{ \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\} \end{array} \right. \\ \begin{array}{l} & \underline{\text{2HDM+S potential}} \\ & \mathcal{V} \left(\Phi_{1}, \Phi_{2} \right) + \frac{1}{2} m_{S_{0}}^{2} S^{2} + \frac{\lambda_{S_{1}}}{2} \Phi_{1}^{\dagger} \Phi_{1} S^{2} \\ & + \frac{\lambda_{S_{2}}}{2} \Phi_{2}^{\dagger} \Phi_{2} S^{2} + \frac{\lambda_{S_{3}}}{4} \left(\Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right) S^{2} \\ & + \frac{\lambda_{S_{4}}}{4!} S^{4} + \mu_{1} \Phi_{1}^{\dagger} \Phi_{1} S + \mu_{2} \Phi_{2}^{\dagger} \Phi_{2} S \\ & + \left\{ \left[\lambda_{6} \left(\Phi_{1}^{\dagger} \Phi_{1} \right) + \lambda_{7} \left(\Phi_{2}^{\dagger} \Phi_{2} \right) \right] \Phi_{1}^{\dagger} \Phi_{2} + \text{h.c.} \right\} \end{array}$$

Out of considerations of simplicity, assume S to be Higgs-like, which is not too far fetched.

The Decays of H and S

 In the general case, H can have couplings as those displayed by a Higgs boson in addition to decays involving the intermediate scalar and Dark Matter

$$\begin{array}{l} H \rightarrow WW, ZZ, q\overline{q}, gg, Z\gamma, \gamma\gamma, \chi\chi \\ + \quad H \rightarrow SS, Sh, hh \end{array}$$

Interesting final states : Multilepton, di-photon

S. No.	Scalars	Decay modes
D.1	h	$bar{b}, au^+ au^-, \mu^+\mu^-, sar{s}, car{c}, gg, \gamma\gamma, Z\gamma, W^+W^-, ZZ$
D.2	H	D.1, hh, SS, Sh
D.3	Α	D.1, $t\bar{t}$, Zh, ZH, ZS, $W^{\pm}H^{\mp}$
D.4	H^{\pm}	$W^{\pm}h, W^{\pm}H, W^{\pm}S$
D.5	S	$D.1, \chi \chi$

	Scalar	Production mode	Search channels					
r. Phys. J. C (2016) 76:580		$gg \rightarrow H, Hjj (ggF \text{ and VBF})$	Direct SM decays as in Table 1					
			$\rightarrow SS/Sh \rightarrow 4W \rightarrow 4\ell + E_T^{\text{miss}}$ $S \rightarrow \gamma\gamma/VV h \rightarrow bb/\gamma\gamma \text{ etc.}$					
	Н		$\rightarrow hh \rightarrow \gamma \gamma b \bar{b}, \ b \bar{b} \tau \tau, \ 4b, \ \gamma \gamma W W$ etc.					
			$\rightarrow Sh$ where $S \rightarrow \chi \chi \implies \gamma \gamma, b\bar{b}, 4\ell + E_{\rm T}^{\rm miss}$					
		$pp \rightarrow Z(W^{\pm})H \ (H \rightarrow SS/Sh) \rightarrow 6(5)l + E_{\rm T}^{\rm miss}$						
			$\rightarrow 4(3)l + 2j + E_{\mathrm{T}}^{\mathrm{miss}}$					
			$\rightarrow 2(1)l + 4j + E_{\mathrm{T}}^{\mathrm{miss}}$					
		$pp \rightarrow t\bar{t}H, (t+\bar{t})H (H \rightarrow SS/Sh)$	$\rightarrow 2W + 2Z + E_{\rm T}^{\rm miss}$ and <i>b</i> -jets					
			$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$					
		$pp \rightarrow tH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$					
Eur. Phys	H^{\pm}	$pp \rightarrow tbH^{\pm} (H^{\pm} \rightarrow W^{\pm}H)$	Same as above with extra <i>b</i> -jet					
		$pp \rightarrow H^{\pm}H^{\mp} (H^{\pm} \rightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$					
		$pp \rightarrow H^{\pm}W^{\pm} (H^{\pm} \rightarrow HW^{\pm})$	$\rightarrow 6W \rightarrow 3$ same sign leptons + jets and $E_{\rm T}^{\rm miss}$					
	A	$gg \rightarrow A (ggF)$	$\rightarrow t\bar{t}$					
			$ ightarrow \gamma\gamma$					
		$gg \rightarrow A \rightarrow ZH \ (H \rightarrow SS/Sh)$	Same as $pp \rightarrow ZH$ above, but with resonance structure over final state objects					
		$gg \rightarrow A \rightarrow W^{\pm}H^{\mp}(H^{\mp} \rightarrow W^{\mp}H)$	6W signature with resonance structure over final state objects					

ATLAS/CMS H→SS/Sh searches performed

Search for $H \rightarrow SS$ in ATLAS

✓ ATLAS H→SS was performed together with BSM H → hh search with 4W multi-lepton final states and some benchmark mass points were chosen.

Search for $H \rightarrow Sh$ in CMS

- ✓ Very recently, CMS showed the X→S(→bb)h(→ττ) search with a grid of mass points X and S.
- ✓ No excess has been observed.

Photon related H→SS,Sh searches performed so far at the LHC

Excesses for di-photon, zγ final states associated with leptons, missing energy, b-jets

Combined components for previous page

arix: 2109.02650

Excess for ATLAS/CMS di-photon/Zγ related results

> Using public ATLAS/CMS results with di-photon and $Z\gamma$ results, we can extract the excess around 151 GeV with 5.1 σ and 4.8 σ considering Look-Else-Where effect.

- ✓ Most contribution from di-photon.
- > Consistent with H →SS* hypothesis with m_H =270 GeV

Multi-lepton final states

Top associated Higgs production (Multi-lepton final states)

Reduced cross-section of ttH+tH is compensated by di-boson, (SS, Sh) decay and large Br(S→WW). Production of same sign leptons, three leptons is enhanced. Enhanced tH cross-section Produces SS 2I, 3I with b-jets, including 3 b-jets

Explains anomalously large ttW+tth+4t cross-sections seen by ATLAS and CMS

<u>Methodology</u>

(to avoid biases and look-else-where effects)

Fixed final states and phase-space defined by fixed model parameters. NO tuning, NO scanning

Update same final states with more data in Run 2

Study new final states where excesses predicted and data available in Run 1 and Run 2 (e.g., SS0b, 3l0b, ZW0b)

<u>J.Phys. G46 (2019) no.11, 115001</u> <u>JHEP 1910 (2019) 157</u> <u>Chin.Phys.C 44 (2020) 6, 063103</u> <u>Physics Letters B 811 (2020) 135964</u> <u>Eur.Phys.J.C 81 (2021) 365</u> 17

Anatomy of the multi-lepton anomalies

Final state	Characteristic	Dominant SM process	Significance
l+l- + jets, b-jets	m _{II} <100 GeV, dominated by 0b- jet and 1b-jet	tt+Wt	>5σ
l+l- + full-jet veto	m _{II} <100 GeV	ww	~3σ
l±l± & l±l±l + b- jets	Moderate H_T	ttW, 4t	>3σ
l±l± & l±l±l et al., no b-jets	In association with h	Wh, WWW	~4.5σ
Z(→I⁺I⁻)+I	р _{тz} <100 GeV	ZW	>3σ

Anomalies cannot be explained by mismodelling of a particular process, e.g. ttbar production alone.

Examples

Impact on Higgs Physics

<u>The presence of a BSM signal of the type $H \rightarrow Sh$ would lead to:</u>

- The presence of extra leptons in association with h.
- □ Affects the Wh measurement (*Eur.Phys.J.C* 81 (2021) 365)
- □ **Distortion of Higgs p_T and rapidity (under study)**

No tuning of model parameters performed. Look at fixed corners of the phase-space fixed with parameters of 2017.

- Survey of LHC results on Vh (V=W,Z) production (*Eur.Phys.J.C 81 (2021) 365*)
- The BSM (H→Sh) signal appears at low p_{Th} and the SM signal is prevalent at larger p_{Th} (no tuning of parameters)
- Include those results from ATLAS and CMS where no requirements on p_{Th} (or correlated observables) is not done or used in an MVA.
- Those results where the final state is treated more "inclusively" display elevated signal strengths for Wh production:

 $\mu(Wh) = 2.41 \pm 0.37$

- This represents a 3.8σ deviation from the SM value of 1.
 - BSM signal normalization less than expected from multilepton excesses assuming Br(H→Sh)=100%.

			-				-	
Higgs decay	Ref.	Experiment	\sqrt{s} , \mathcal{L} TeV, fb ⁻¹	Final	Category	μ	Used in combination	Comments
	66				DFOS 2j	$2.2^{+2.0}_{-1.9}$	4	
				2ℓ	SS 1j	8.4+4.3	1	2ℓ combination: $\mu = 3.7^{+1.9}_{-1.5}$
			7, 4.5		SS 2j	$7.6^{+6.0}_{-5.4}$	1	
		ATLAS	8, 20.3	3ℓ	1SFOS	$-2.9^{+2.7}_{-2.1}$	x	$m_{\ell_0 \ell_2}$ used as input BDT discriminating variable
					0SFOS	$1.7^{+1.9}_{-1.4}$	1	
WW	[67]	ATLAS	13, 36.1	3ℓ	1SFOS 0SFOS	$2.3^{+1.2}_{-1.0}$	1	1SFOS channel uses $m_{\ell_0 \ell_2}$ in the BDT but excess driven by 0SFO
	-		7, 4.9	2ℓ	DFOS 2j	$0.39^{+1.97}_{-1.87}$	1	Discrepancy at low $m_{\ell\ell}$
	[68]	CMS	8, 19.4	3.6	0+1SFOS	0.56+1.27	1	
	[69]	CMS	13, 35.9	2ℓ	DFOS 2i	$3.92^{+1.32}$	1	Discrepancy at low me
				3.6	0+1SFOS	2.23+1.76	1	
				16	1+==	18+31	1	
	[70]	ATLAS	8, 20.3	28	$e^{\pm}u^{\pm} \pm \pi$	1.3 ± 2.1 1.3 ± 2.8		
		CMS	7 49	1/	1+nn	1.0 1. 2.0	, ,	BDT based on $n^{\tau_1} + n^{\tau_2}$
$\tau \tau$	[71]		8 19 7	28	$e^{\pm}u^{\pm} \pm \pi$	-0.33 ± 1.02	* *	Split $n_{1}^{\ell_{1}} + n_{2}^{\ell_{2}} + n_{1}^{\Gamma}$ at 130 GeV
	[72]	CMS	13, 35.9	1/	1+nn	$3.39^{+1.68}_{-1.54}$	~	opine pT + pT + pT at 100 Oct
				28	$e^{\pm}u^{\pm} \pm \pi$		4	
	[73]	ATLAS	7, 5.4 8, 20.3	4	с µ т н			
				ev.	One-lepton Emiss	10+16	2	$E_{\rm miss} > 70 - 100 \ C_{\rm eV}$
				10,00	Hadrania	1.0 ± 1.0	x	$E_{\rm T} = 70 - 100 {\rm GeV}$
				JJ fre	One lenter			Part Filiss at 45 CoV
	74	CMS	7, 5.1 8, 19.7	4	Emiss	0.16+1.16		$E_T = at 45 GeV$
				10,00	L _T .	-0.16_0.79	x	$E_{\rm T} = > 70 {\rm Gev}$
				33	Hadronic	0.41+0.71		$p_{T} > 13m_{\gamma\gamma}/12$ $t + E_{T}^{min} = 150 \text{ GeV}$
	75	ATLAS	13, 139	lv	One-lepton	2.41 -0.70	*	$p_T \sim < 150 \text{ GeV}$ $e^{\ell + E_T^{min}} > 150 \text{ GeV}$
$\gamma\gamma$				1	ramiss	2.64_0.99	x	$p_T \rightarrow 5150 \text{ GeV}$
				jj	Hadronic	a ma+0.95	x	四丁> 75 GeV
						0.76_0.83	x	$60 < m_{jj} < 120 \text{ GeV}$
				f.v.	One-lepton	3.10_1.72	× ×	$m_{jj} \in [0, 60] [120, 350] \text{ GeV}$ Supercoorded by full Run 2 result
	[76]	CMS	13, 35.6	4	pmiss	$3.0_{-1.3}$		Emiss > or C.V
				10,00	Hadronia	5 1+2.5	x	$E_{\rm T} > 85 {\rm GeV}$
	77		13, 137	33 fre	One-lepton	0.1_2.3 1.91+1.42	*	$p_T / m_{\gamma\gamma}$ not used $p_V^V < 75 \text{ GeV}$
		CMS			Underse in	n en+0.89	*	pT < 15 Gev
zz				33	nauronic	0.69-0.91	x	$p_{\rm T}/m_{\gamma\gamma}$ used in BDT
	[78]	ATLAS	13, 139	$\ell\ell\ell\ell + \ell\nu$	Lep-enriched	$1.44\substack{+1.17\\-0.93}$	x	Number of jets used in MVA
	-			$\ell \ell \ell \ell + q \bar{q}$	2j	0.40		m_{jj} used in MVA
		-		$\ell\ell\ell\ell + \ell\nu$	Lep-low p_T^{Λ}	$3.21^{+2.49}_{-1.85}$	4	$p_T^a < 150 \text{ GeV}$
	79	CMS	13, 137.1		Lep-high p_T^h	$0.00^{+1.57}_{-0.00}$	x	$p_{\rm T}^{\rm a}$ >150 GeV
				$\ell\ell\ell\ell\ell + q\bar{q}$	2j	$0.57^{+1.20}_{-0.57}$	x	$60 < m_{jj} < 120 \text{ GeV}$

New results from CMS in the measurement of Vh, h→WW add to the anomalies reported in Eur.Phys.J.C 81 (2021) 365

Deviation from the SM becomes stronger with p_{TV}<150 Gev

Proposed further studies at the LHC/CEPC

ATLAS $\gamma\gamma$ +1Lepton/2Letpon analysis under h($\rightarrow \gamma\gamma$)h($\rightarrow WW^*$)

- ✓ The signal can also be produced by $h(\rightarrow \gamma \gamma) S(151.5)(\rightarrow WW^*)$.
- ✓ ATLAS shows the analyses of $\gamma\gamma$ +Leptons under the frame of $h(\rightarrow \gamma\gamma)h(\rightarrow WW)$ with Run1 and Run2 analysis.
- ✓ From the di-photon peak around 125 GeV and with the subtract the SM Higgs contribution, one can extract the contribution from $h(\rightarrow \gamma\gamma)S(151.5)(\rightarrow WW^{*})$.

$H \rightarrow SS^* \rightarrow \gamma\gamma + bb$ analysis

- ✓ The search for H→SS* can also be performed with asymmetrical configuration of $\gamma\gamma$ +bb.
- ✓ One can expect to achieve 7_☉ according to current excess with Run2+3 data.
- ✓ In addition $H \rightarrow SS^* \rightarrow bb \tau \tau$ can also be exploited.

H→SS,Sh in future e⁺e⁻ colliders

- Considering that the S is around 151 GeV, H 240-270 GeV, future e⁺e⁻ colliders can be a idea place to do the study.
 - ✓ in particular for upgradable run (>360 GeV)
 - ✓ With higher order computation, the xsection peak can shift a bit to the left (need inputs from you theorists)

Outlook and Conclusions

- Searches for H→SS*/Sh remain unexplored for the most part at the LHC
- Possible candidates for S with masses around 151.5 GeV and observed excess is ~5σ
 - Further motivate γγbb searches in asymmetric configurations at the LHC
 - $h(\rightarrow\gamma\gamma)S(\rightarrow WW^*)$ can be exploited as well.
- These produce final states with multiple leptons in different topologies that include OS 2I, SS 2I, 3I, 4I, with and without b-quarks
 - Seem to describe reasonably well the multilepton anomalies at the LHC
- Future High energy run for e⁺e⁻ colliders can be a good machine to further exploit this.

backup Slides

Masses in the 2HDM+S

$$\begin{pmatrix} H_1 \\ H_2 \\ H_3 \end{pmatrix} = \mathbb{R} \begin{pmatrix} \rho_1 \\ \rho_2 \\ \rho_S \end{pmatrix},$$

Mass-matrix for the CP-even scalar sector will modified with respect to 2HDM and that needs a 3 x3 matrix (three mixing angles). Couplings are modified.

 $\mathbb{R} = \begin{pmatrix} c_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{1}}c_{\alpha_{2}} & s_{\alpha_{2}} \\ -(c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}c_{\alpha_{3}}) & c_{\alpha_{1}}c_{\alpha_{3}} - s_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} & c_{\alpha_{2}}s_{\alpha_{3}} \\ -c_{\alpha_{1}}s_{\alpha_{2}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{3}} & -(c_{\alpha_{1}}s_{\alpha_{3}} + s_{\alpha_{1}}s_{\alpha_{2}}c_{\alpha_{3}}) & c_{\alpha_{2}}c_{\alpha_{3}} \end{pmatrix}$

$$M_{\rm CP-even}^2 = \begin{pmatrix} 2\lambda_1 v_1^2 - m_{12} \frac{v_2}{v_1} & m_{12} + \lambda_{345} v_1 v_2 & 2\kappa_1 v_1 v_S \\ m_{12} + \lambda_{345} v_1 v_2 & -m_{12} \frac{v_2}{v_1} + 2\lambda_2 v_2^2 & 2\kappa_2 v_2 v_S \\ 2\kappa_1 v_1 v_S & 2\kappa_2 v_2 v_S & \frac{1}{3}\lambda_S v_S^2 \end{pmatrix}$$

<u>Correlation plots for the three mixing angles and tanß.</u> <u>Blue (red) points correspond to Br(h \rightarrow SM) within 10% (20%) of the SM h values (J.Phys. G46 (2019) no.11, 115001)</u>

Results using N2HDECAY (arXiv:1612.01309) for one benchmark point

