

Gas gain study for drift tubes in beam test

Shuiting Xin, Siman Liu, Guang Zhao, Linghui Wu, Weimin Song

Cluster Counting Meeting

Oct 15, 2021

Introduction

The setting up of voltage in a drift chamber experiment is important.

Study the gas gain properties for the dift tubes that will be used in the beam test.

Simulation for Beam Test

- ❖ Equipments: 8 tubes x 4 (75%,80%,85%,90%)gas mixtures, 32 settings in total.
- Pressure 1 atm, Temperature 20° C

Tubes cm	node size (um)				
	15	20	25	30	
1	X	X	X		
2		x	x		
3			x	x	

Two considerations

2021/10/15

- ♦ A continuous cathode at ground voltage.
- ♦ A dense sequence of field wires.

geometry

Comparison of AvalancheMicroscopic and DriftLineRKF

- ❖ <u>AvalancheMicroscopic:</u> Accurate <u>simulations</u> of electron trajectories in small-scale structures.
- DriftLineRKF: Runge-Kutta-Fehlberg integration to solve the first order equation of motion.

The following results were generated by <u>AvalancheMicroscopic</u>

Parameterization

The gain can be described as Polya distribution

$$P(G) = C_0 \frac{(1+\theta)^{(1+\theta)}}{\Gamma(1+\theta)} \left(\frac{G}{G_0}\right)^{\theta} exp\left[-(1+\theta)\frac{G}{G_0}\right],$$

Where G0 the average effective gain of a single electron.

Theta the variance of Polya distribution

Tube3cm_Node30um_90percent 1800V

Gain vs Voltage: 1cm tube

- ♦ Larger fraction of Helium results in higher gain.
- ♦ Larger radius of node -> lower linear charge density
 - ♦ Leads to lower gain .

2cm tube

3cm tube

Summary

- ❖ The gas gain of tubes with different size is investigated using Garfield simulation.
- ❖If 10⁵ is the desired avalanche size, from the plots we will need voltage.

Voltage (V) Tubes cm	node size (um) (split into 4 gases 90/85/080/75)				
	15	20	25	30	
1	1450/1550/1600/1700	1450/1550/1700/1800	1500/1650/1750/1900		
2		1700/1800/1900/2100	1700/1850/2000/2150	1800/1950/2000/2250	
3			1800/2000/2100/2300	1900/2200/2300/2400	

❖ We can also study the impact of pressure and temperature on the gain.

Backup

K/pi separation for different gas with dN/dx(solid) and dE/dx(dash).

backup

Gain expression

$$M = \exp\left\{2\sqrt{\frac{kNCVR_a}{2\pi\varepsilon}}\left(\sqrt{\frac{V}{V_T}} - 1\right)\right\}$$