Estimation of momentum resolution

G. Li & L. Wu for tracking optimization team Oct. 15th, 2021

Momentum distribution of charged tracks @ 240 & 91 GeV

Formulas of Pt resolution

$$\frac{\sigma P_T}{P_T} = \mathbf{a} \cdot P_T \oplus \frac{\mathbf{b}}{\sin^{1/2}\theta}$$

$$\frac{\sigma P_T}{P_T}|_{Res.} = \frac{\sigma_{r\phi} P_T}{0.3BL^2} \sqrt{\frac{720}{N+5}}$$

$$\frac{\sigma P_T}{P_T}|_{MS} = \frac{0.0136 (GeV/c)}{0.3\beta BL} \sqrt{\frac{X}{X_0 \sin \theta}}$$

Contribution from measurements

$$\frac{\sigma P_T}{P_T}|_{Res.} = \mathbf{a} \cdot P_T$$

- An accurate estimation of a could be achieved with the least square fit
- a could be improved by optimizing the size of DC

Previous results

a is estimated by LSFb is calculated with formula (not accurate)

$$\frac{\sigma P_T}{P_T}|_{MS} = \frac{0.0136 (GeV/c)}{0.3\beta BL} \sqrt{\frac{X}{X_0 \sin \theta}}$$

Xin's talk in Yangzhou workshop

Application of LDT

 LDT applied to improve the precision of tracking fast simulation

The LiC Detector Toy fast simulation program

Manfred Valentan*, Rudolf Frühwirth, Winfried Mitaroff, Meinhard Regler

Institute of High Energy Physics (HEPHY), Austrian Academy of Sciences Nikolsdorfer Gasse 18, 1050 Vienna, Austria E-mail: manfred.valentan@oeaw.ac.at

The "LiC Detector Toy" (LDT) is a fast single-track simulation and reconstruction tool, aiming at the optimization of tracking detector design, i.e. geometric layout and amount of material. Its implementation is based on the MATLAB system, with a user-friendly graphic user interface. The simulation can handle cylindrical and planar detector layers, where the detector setup is defined in human-readable text files. Simulated helix tracks are reconstructed with a Kalman filter including statistical tests. A key feature is an intuitive possibility to repeat simulation runs, yielding curves

Update DC parameters according to Mingyi' s numbers for # of layers = 100

Sub detector	#	R	Resolust	Material	
layer (mm) s	r-φ	Z	(%X ₀)		
Beam pipe	1	14(10)			0.15
VXD	6		2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15/layer
VXD shell	1	65			0.15
SIT	4	Uniformly	7.2	86.6	0.65/layer
DC inner wall	1	798-800			0.104
DC (cell 1x1cm ²)	100	800-1800	100	2000	0.0116/layer
DC outer wall	1	1800 -1808			1.346
SET	1	1810	7.2	86.6	0.65
Total	115				7.06

Total X0 > 7% (5.35% at Yangzhou workshop)

Role of DC in measuring Pt δR = 1000 mm, # of layers=100

8

Role of DC in measuring Pt Fixing $\delta R = 1000$ mm, changing # of layers Equivalent to changing cell size Takes 100 layers as reference

Less layers achieve better momentum measurement

Role of DC in measuring Pt Changing Rin with fixing # of layers = 100 Larger DC volume means larger cell size 800 mm (1000mm thick) as the reference

thickness (# of layers) or inner radius of DC

Changing Rin with fixing cell size Larger DC volume means more cells

The a consistent with Linghui' s study

11

Summary

- Calculation with the classic formula can not give a good estimation of MS effect in low Pt range
- LDT was applied to improve the tracker optimization.
- Further study ongoing to understand the behavior in low Pt range
- To be checked with other simulation tools

Tracks and spatial spread due to MS

Tracking system

From Xin's Yangzhou talk, starting point

Sub detector	N layers	Resolust	Material budget (%X ₀)	
		r-ф	Z	
VXD	6	2.8/6/4/4/4/4	2.8/6/4/4/4/4	0.15 per layer
SIT	4	7.2	86.6	0.65 per layer
DC (cell 1x1cm ²)	100	100	2000	1.2
SET	1	7.2	86.6	0.65
Total	111			5.35

- VXD keeps unchanged
- 4 SITs
- dR of the DC =1 m
- 1 SET

Updates of DC parameters from Mingyi

R (mm)	L of wires(mm) (cosθ=0.83)		# of			
1800	5356.8	cell size(mm ²)	layers	# of Cells	Γ _s (10 ³ kg)	T _F (10 ³ kg)
1750	5208.0	10×10	100	81 682	14.8	47.4
1700	5059.2					01.1
1600	4761.6	15x15	6/	36 303	6.6	21.1
1500	4464.0	18x18	56	25 210	4.6	14.6
800	2380.8	20x20	50	20 420	3.7	11.8

R extension	800-1800 mm
Inner wall	0.2 mm (X/X0=0.00104)
Outer wall	2.6 mm (X/X0=0.01346) (averaged results)
Diamator of field wire	50µm (Gold-plated Aluminum)
Diameter of field wire	(X/X0=0.0036 for 10x10 cell)
	20µm (Gold-plated Tungsten)
Diameter of signal wire	(X/X0=0.0026 for 10x10 cell)
Square cell (F:S = 3:1)	BESIII-Like MDC
Cell size	10, 15, 18, 20 mm
Longest wire (cosθ=0.83)	5357mm
Gas : He/iC4H10	He/iC4H10=80:20

0.000116 / each layer vs. 0.000054 for 10x10 cell
0.000123 / each layer vs. 0.000081 for 15x15 cell
0.000139 / each layer vs. 0.000108 for 20x20 cell