CMS Winter Camp

Ying An, Jie Xiao, Licheng Zhang Peking University

Introduction & Motivation

- **Signal:** six fermions final state at leading order $\mathcal{O}(\alpha^6)$
- Irreducible background: QCD-induced $\mathcal{O}(\alpha^4 \alpha_s^2)$
- Interference: between EW and QCD $\mathcal{O}(\alpha^5 \alpha_s)$
- **Reducible** background due to mis-ID of final state particles
- Significant systematic uncertainties from jet energy reconstruction and background modeling

Introduction & Motivation

Important process to investigate electroweak symmetry breaking(EWSB)

- ☑ Probe the nature of EW symmetry breaking
- Unitarity preservation visible only in VV scattering

Complimentary to direct Higgs Boson measurement

Solution The perturbative cross section of longitudinal VBS ($V_L V_L \rightarrow V_L V_L$)

diverges, if there was no Higgs boson or a similar mechanics

10³

Introduction & Motivation

CMS Preliminary June 2021 **1** 7 TeV CMS measurement (L ≤ 5.0 fb⁻¹) 8 TeV CMS measurement (L ≤ 19.6 fb⁻¹) ■ 13 TeV CMS measurement (L \leq 137 fb⁻¹) Theory prediction ∠ ∠ ∠ CMS 95%CL limits at 7, 8 and 13 TeV ⊵n iet(s)

Loction, α [bb] broduction, α [bb] 10⁴ 10² 10 10⁻¹ 10⁻² 10^{-3} 10 $\begin{array}{c} \mathsf{EW}^{\mathsf{I}}\mathsf{EW}^{\mathsf{I}}\mathsf{W}^{\mathsf{Y}} \rightarrow \mathsf{I}_{\mathsf{EW}} \quad \mathsf{I}_{\mathsf{EW}} \quad \mathsf{I}_{\mathsf{EW}} \quad \mathsf{I}_{\mathsf{EW}} \quad \mathsf{I}_{\mathsf{W}} \quad \mathsf{I}_{\mathsf{W$ $tW't_{s-ch}$ 'ttγ 'tZq'ttΖ' tγ 'ttW'tttt ggH^{VBF} W $z'w_{\gamma}'z_{\gamma}wwwz$ tt VH WH ZH tth th HH t_{t-ch} EW, $Z\gamma\gamma$, $W\gamma\gamma$: fiducial with $W \rightarrow Iv$, $Z \rightarrow II$, $I=e,\mu$ Th. $\Delta \sigma_{\mu}$ in exp. $\Delta \sigma$ All results at: http://cern.ch/go/pNj7

Introduction & Motivation

 \mathcal{U}

d

Sample & Selection

Good Muon

- Tight muon WP
- Relative PF-isolation (0.4 cone) < 0.15
- p_T > 20 GeV, |η| < 2.4

Veto Muon

- Loose muon WP
- Relative PF-isolation (0.4 cone) < 0.25
- p_T > 20 GeV, |n| < 2.4

Veto Electron

- Loose electron WP
- p_T > 20 GeV, |η| < 2.5, |η| < 1.4442 or
 1.566 < |η| < 2.5
 For third lepton veto

Good Electron

- Medium electron WP
- $p_T > 25$ GeV, $|\eta| < 2.5$

Good Photon

- Medium photon WP
- Electron veto
- $p_T > 20$ GeV and $|\eta| < 1.4442$ or 1.566 < $|\eta| < 2.5$

Jets

- Particle-flow jets and AK4CHS (0.4 cone; charged particles from pileup are removed)
- Tight jet WP and pileup jet WP (pT < 50 GeV)
- p_T>30 GeV
- |η| < 4.7

Question:

Why a looser ID is used to reject the extra leptons?

Exercise1

Code example in Jupyter notebook

```
fdir='/data/pubfs/pku_visitor/public_write/zajj_ori/'
f=ROOT.TFile(fdir+'cutla-outZA17.root')
tree=f.Get('ZPKUCandidates')
c1=ROOT.TCanvas('c1','',600,500)
c1.Draw()
tree.Draw('massVlep>>h1(20,70,110)','(Mjj>150)*scalef','HIST')
```

Task:

Please use the signal sample saved in /data/pubfs/pku_visitor/public_write/zajj_ori/ named cutla-outZA-EWK17.root and draw plots for variable named "massVlep", "photonet", "Mva", "Mjj" and some variables you are interested in. (tree.Print() can be used to see the branch list)

Question:

Why there are two peaks in the Mva distribution? Why the Z mass distribution in QCD ZA sample have more events in the low mass region?

CONS, or the second sec

Introduction — Collision

protons are not elementary objects

pp collision = collision of two "garbage cans" full of <u>quarks</u> and <u>gluons</u> (a.k.a. partons)

$$\sigma(pp \to H) = \int \hat{\sigma}(gg \to H | x_1, x_2) \cdot f_g(x_1) \cdot f_g(x_2) \cdot dx_1 dx_2 + \dots$$

where

 x_1 - fraction of proton momentum carried by one gluon

 x_2 - fraction of proton momentum carried by another gluon

 $\hat{\sigma}(gg \to H|x_1, x_2)$ - partonic cross section $gg \to H$, given they have momenta x_1 and x_2

 $f_{g}(x)$ - probability density function to find a gluon with fractional momentum x

Introduction – CMS

Object reconstruction

- **primary vertex:** point from where a large number of charged tracks come out
- **muon:** track in Tracker matching a track in Muon System
- **electron:** track in Tracker matching EM cluster in ECAL and no energy deposits in HCAL
- **photon:** EM cluster in ECAL, no tracks pointing to it, and no energy deposits in HCAL
- **jet:** fairly collimated spray of hadrons originating from knocked off quarks and gluons
- hadronic τ : τ decaying hadronicly (1 or 3 collimated tracks + close-by photons from π^0)
- **b-tagged jet:** *jet with a heavy-flavor quark inside (b or c)*
- **MET:** missing transverse momentum
- $\pi/K/p$: some analyses care about distinguishing between individual charged hadrons (this is possible for relatively small momenta of O(1) GeV, using time-of-flight $\sim 1/v$ and $dE/dx \sim 1/v^2$)

Object – EGamma

E/γ Tracker Material Showers:

example of a showering electron and a converting photon in the tracker material

two key features

- electron loses energy and starts to bend more in B-field as it radiates photons
- photon now leaves two tracks, starting from a common vertex at a tracker layer
 - 20 to 60% of photons convert depending on η

Object – EGamma

BARREL	Loose (90.08%)	Medium (80.29%)	Tight (70.24%)
Background Rejection	Loose (86.25%)	Medium (89.36%)	Tight (90.97%)
HoverE	0.04596	0.02197	0.02148
$sigma_{ietaieta}$	0.0106	0.01015	0.00996
Rho corrected PF charged hadron isolation	1.694	1.141	0.65
Rho corrected PF neutral hadron isolation	24.032 + 0.01512*pho_pt + 2.259e- 05*pho_pt^2	1.189 + 0.01512*pho_pt + 2.25 9e- 05*pho_pt^2	0.317 + 0.01512*pho_pt + 2.259e- 05*pho_pt^2
Rho corrected PF photon isolation	2.876 + 0.004017*pho_pt	2.08 + 0.004017*pho_pt	2.044 + 0.004017*pho_pt

Exercise2

fdir='/data/pubfs/pku_visitor/public_write/zajj_ori/' fdy=ROOT.TFile(fdir+'dyJets_94X_massTreeV2.root') tree3=fdy.Get('EventMassTree')

Task:

Draw plots for some variables related with the electron identification

- ele1SigmalEtalEta
- ele1HoverE

Question: Why the HoverE is not 0?

Object – Muon

CSC Cathode strip chamber

DT Drift tube

RPC Resistive plate chamber

Object – Muon

Muon identification:

- Set of criteria to balance between efficiency and purity
- Criteria include:
 - Muon reconstruction goodness (eg χ^2)
 - Hits per track
 - Degree of matching between tracker / standalone tracks
- Best choice depends on the analysis

Muon isolation:

- Distinguish prompt μ from μ within jets
- Relative to $p_T(\mu)$
- Sum energy within a ΔR cone around μ
- Two strategies:
 - Track-based; uses tracks
 - PF-based; uses PF candidates
- PF isolation takes into account neutral hadron contribution
- WP are defined for 95% and 98% efficiency

12

Cone-size: $\Delta R = 0.4$ (regular) or 0.8 (FatJet) [Atlas $\Delta R = 1$] Clustering: anti-k_T

Object – Correction

Scale Factors

• Needed to scale Monte Carlo to Data

Analysis – Background

Background sources for :

Photons

Neutral mesons

quark

- Pions with collimated $\pi \rightarrow \gamma \gamma$
- Electrons without well reconstructed track

- Can radiate a photon easily
- Will be mis-identifies as photon

Exercise3

fdir='/data/pubfs/pku_visitor/public_write/zajj_ori/' f=ROOT.TFile(fdir+'cutla-outZA-EWK17.root') tree=f.Get('ZPKUCandidates')

Task:

The photon_isprompt can be used to discriminate the prompt and nonprompt photon, please draw the distribution of the $\sigma_{i\eta i\eta}$ with branch name photon_sieie for the prompt and nonprompt photon.

Question:

Why there are two peaks? What's the difference between the prompt and nonprompt?

VVy – Nonprompt photon

Based on the Z+jets events, two good leptons from Z. 70 < m_u < 110 GeV

Data	Remove σ _{iηiη} cut
True Template	Remove $\sigma_{i\eta i\eta}$ cut $\Delta R(\gamma^{reco}, \gamma^{gen}) < 0.3$ Get shape from simulation.
Fake template	Remove σ _{iηiη} cut Invert the charged isolation variable Get shape from data.

weight(
$$p_T^{\gamma}$$
) = $\frac{n_{data}(p_T^{\gamma})}{N_{fake}^{unweighted}(p_T^{\gamma})} \times \epsilon_{fake-fraction}(p_T^{\gamma})$
Applied to

Signal region events where the tight photon ID is replaced by the fake photon ID

WW γ inherits the method from VBS Z γ (SMP-20-016)

Exercise4

fdir='/data/pubfs/pku_visitor/public_write/zajj_ori/' f=ROOT.TFile(fdir+'cutla-outZA17.root') tree=f.Get('ZPKUCandidates')

Task:

Draw the mjj distributions with different weights.