



# CMS 探测器

张华桥 (高能所)

zhanghq@ihep.ac.cn

http://people.ucas.edu.cn/~zhanghq

Ref. CMS induction course







# CMS 探测器介绍



- CMS: Compact Muon Solenoid (紧凑谬子螺线管)
  - 1990 Aachen: 提出基于高磁场强度的紧凑性探测器设想
  - 1992 Evian: 概念设计报告
  - 2008 首次LHC数据取数



- 中国1990s加入CMS
- 1998与CMS签订正式 合作,参与单位:高能 所,北大,科大;后发展 到清华,中山,北航, 复旦,浙大,南师大
- 参与建造CSC/RPC, 一期升级的CPPF触发
   电子学系统,以及二期
   升级到HGC,GEM, trigger,MTD等



# 为什么CMS探测器如此设计建造







### CMS 物理需求





### · 真实物理过程







The rest (almost) is **non-diffractive** (nd) with particles distributed over the full range = minimum bias events

中国CMS冬令营









#### 中国CMS冬令营



### LHC 加速器系统











### CMS 探测器面临的挑战



#### Proton bunch

#### Proton bunch



单个质子对的核反应



Figure 1.16: High pileup event with 78 reconstructed vertices taken in 2012 LHC CMS实验中的一次束团对撞



每秒对撞4000万次@~20年

• 借我一双慧眼,让我把这纷扰看的清清楚楚明明白白真真切切





- 粒子探测器的主要功能:
  - 记录径迹:利用带电粒子引起的电离或激发
  - 测量动量:利用带电粒子在磁场中的偏转
  - 测量能量:利用电磁或强子簇射
  - 鉴别粒子种类:利用不同粒子在电离能损、契伦科夫辐射、穿越辐射、飞行速度,簇射等方面的差异











- CMS主要探测: 电子, 光子, 谬子, 喷注等(带电/中性粒子)
  - 在大空间范围,大动量范围内有好的单个谬子鉴别和动量、角度分辨;好的的双谬子质量分辩(1%@100GeV);在<1TeV动量下有好的电荷符号鉴别</li>
  - 好的带电径迹的动量分辨和重建效率,探测径迹的IP,鉴别b-喷注
  - 好的电磁能量分辨率和双电子/光子质量分辨(1%@100GeV), π0 分辨, 光子鉴别, 孤立化鉴别(电磁量能器)
  - 好的丢失横动量和双喷注能量分辨(强子量能器)







### CMS 坐标系系统



- X轴: LHC环的平面内, 指向LHC的中心
- Y轴:朝上垂直于LHC环的平面
- Z轴:和X,Y行成右手坐标系
- θ: 极角
- η = -ln[tan(θ/2)]: 應快度







# CMS 探测器的设计:磁铁solenoid









v,

- 带电粒子在磁场中的运动:
  - $\frac{\mathrm{d}\vec{p}}{\mathrm{d}t} = \vec{F} = q\vec{v} \times \vec{B}$
- 在垂直磁场和速度的方向:

$$R = \frac{p_{\perp}}{e B} = 3.3 \text{ m} \cdot \frac{p_{\perp}/(\text{GeV}/c)}{B/\text{T}},$$

• 通过运动求解带电粒子横动量

• 
$$S = R - \sqrt{R^2 - \left(\frac{L}{2}\right)^2} \approx \frac{L^2}{8R}$$
  
•  $p_\perp = \frac{0.3L^2B}{8s}$   
•  $\frac{\delta p_\perp}{p_\perp} = \frac{8}{0.3} \frac{1}{L^2B} p_\perp \delta s = \frac{\delta s}{s}$ 

• 总动量的测量:

• 
$$p = \frac{p_{\perp}}{\cos \lambda}$$

中国CMS冬令营

如何改善动量分辨率:增加L<sup>2</sup>B,减小 $p_{\perp}, \delta s$ 造价一般正比L<sup>3</sup>



ρ

8 2021



# CMS磁铁系统: solenoid



- 20 kA @ 2179 圈
- 12米长, 6米直径
  - 包住了量能器和内部径迹探测器
- 内部磁场3.8特斯拉,外部~2T
- 存储了2G焦耳的能量
  - 能融化18吨金













# CMS 探测器的设计:内部径迹探测器



















- 100X150 μm<sup>2</sup> 像素, 工作在零下22度, n-in-p 型传感器
- 覆盖了|n|=2.5 的区域
  - 作为寻迹开始的种子,以及探测径迹的顶点参数
- 在半径 = 3cm处
  - 600 MHz/cm<sup>2</sup>(在LHC 瞬时峰亮度下 (L=2x10<sup>34</sup> cm)<sup>-2</sup>s<sup>-1</sup>)
  - 抗辐照强度: 3x10<sup>14</sup> n<sub>eq</sub>/cm<sup>2</sup>/yr
  - 占空比: 10-3







### **Silicon Pixel**





and 73 e-h pair per micron for MIP







Each pixel cell in the sensor is connected to a pixel cell in the readout chip via a bump bond.

#### 中国CMS冬令营

#### Huaqiao Zhang













中国CMS冬令营

Huaqiao Zhang



- Sensor Technology p-in-n
- Design occupancy 1-3% resolve & isolate tracks
  - Outer cell size ~20cm x 100-200µm
  - Inner cell side ~10cm x 80µm
- Operation -20C
- Signal / noise ~20 (above 10 after radiation)
- Radiation tolerance ~1.5x10<sup>14</sup> n<sub>eq</sub>















#### 中国CMS冬令营

### Huaqiao Zhang



# 安装tracker时的问题



22

- 6.5 tons
- 100 MCHF
- 2000 man years
- 100 m deep shaft below
- Not insured ;-)

On one hook!

Several frightened physicists





CMS



CMS Experiment at LHC, CERN Data recorded: Fri Oct 26 09:06:57 2018 CEST Run/Event: 325309 / 244518 Lumi section: 1 Orbit/Crossing: 121529 / 1650





136 reconstructed vertices in a special run in 2018 确实值这 个价格!



# CMS 探测器的设计:量能器











• 量能器Calorimeter



- 测量粒子的能量(tracker测粒子的"横"动量)
- 量能器的特点:
  - 探测粒子种类多:既能探测带电粒子又能探测中性粒子。
  - 能量测量精度随能量升高而改善, 与其它探测器不同。
  - 对于电子、µ、强子具有不同的响应特征,可以提供粒子鉴别的信息。
  - 可以分割为小单元,从而精确给出入射粒子的位置和方向,簇射形状。
  - 量能器的几何尺寸随入射粒子能量的增加呈对数增长,而磁谱仪的几何尺寸随动量的方根增长。所以在高能条件下,量能器可以有较小的尺寸。
  - 量能器的时间响应可以很快(100ns),可以在高计数率环境下工作。
  - 可以利用能量沉积组成事例选择的触发信号,对感兴趣的事例进行选择。如 中性触发。













#### Huaqiao Zhang



### 电磁量能器



典型电磁簇射

- Electrons and photons, a "self-contained" case:
  - Above 1 GeV: bremsstrahlung (1e± → 1γ) and pair production (1γ → 1e+ + 1e−)
  - Below 1 GeV: ionization, photoelectric, Compton
  - Critical energy, Ec ≈ 610 MeV/(Z + 1.24): energy at which the average energy losses by radiations equal those by ionization
- A cascade process ("shower") develops until the energy of charged secondaries is degraded to the regime dominated by ionization loss (i.e. no production of new particles)

$$\frac{\delta E}{E} = \frac{a}{\sqrt{E}} \bigoplus \frac{b}{E} \bigoplus c$$







- Hadrons, a complex case:
   multi-particle production, typically mesons(π±,π0,K,...)
- N.B. π0 → γγ ⇒ electromagnetic component!
   Inuclei break up leading to spallation neutrons/protons







#### 中国CMS冬令营









longitudinal development

 $\frac{dE}{dt} \propto E_0 t^{\alpha} e^{\beta t}$ 

e.m case, E. Longo (active CMS member! Rome group), I. Sestili, NIM 128 (1975)

**Radiation length** ( $X_0$ ): thickness of material that reduces the mean energy of a beam of high energy electrons by a factor  $e, X_0 \sim A/Z^2$ 

**Molière radius** ( $R_M$ ): average lateral deflection of electrons of critical energy  $E_c$  after traversing  $1X_0$ ; 90%  $E_0$  within  $1R_M$ , 95% within  $3R_M$ 

**Interaction length** ( $\lambda_{int}$ ): average distance a high energy hadron has to travel inside a medium before a nuclear interaction occurs,  $\lambda_{int} = A/N_A \sigma_{int} \propto A^{1/3} \gg X_0$ 

|                         | LAr  | Fe   | Pb   | U    | С    |
|-------------------------|------|------|------|------|------|
| $\lambda_{ m int}$ [cm] | 83.7 | 16.8 | 17.1 | 10.5 | 38.1 |
| $X_0$ [cm]              | 14.0 | 1.76 | 0.56 | 0.32 | 18.8 |









Homogeneous calorimeters: all the energy is deposited in the active medium



- Excellent energy resolution
- No information on longitudinal shower shape

Cost

**Sampling** calorimeters: the shower is sampled by layers of active medium (low-Z) alternated with dense radiator (high-Z)

| ¢       | 14           | 10 |          | N.X      |       | -        | 17 | <   |     |                    | 4   |          | 1 |
|---------|--------------|----|----------|----------|-------|----------|----|-----|-----|--------------------|-----|----------|---|
| St. all |              |    |          |          |       |          | 2  |     |     | 813                | 125 | =        |   |
|         |              |    |          |          |       | 100      |    |     |     | 115 <sup>5</sup> 1 |     |          |   |
| 9       |              |    | 196      | 1990 - C |       |          |    |     |     | 111                |     | <br>2016 |   |
|         | Ares - State |    | Sec. and | XX       | A MAR | 1. A. M. | N. | 1/1 | 1.1 |                    | ~   | -        |   |

- Limited energy resolution
- Longitudinal segmentation: detailed shower shape information
- Cost





#### **Homogeneous, hermetic, high granularity PbWO**<sub>4</sub> crystal calorimeter

- density of 8.3 g/cm<sup>3</sup>, radiation length 0.89 cm, Molière radius 2.2 cm,  $\approx 80\%$  of scintillating light in  $\approx 25$  ns, refractive index 2.2, light yield spread among crystals  $\approx 10\%$
- Barrel: 61200 crystals in 36 super-modules, Avalanche Photo-Diode (APD) readout
- Endcaps: 14648 crystals in 4-Dees, Vacuum Photo-Triode (VPT) readout
- **Preshower** (endcaps only):  $3X_0$  of Pb/Si strips,

 $1.48 < |\eta| < 3.0,$ 

 $|\eta| < 1.48,$ 

 $1.65 < |\eta| < 2.6$ 







Before and after cutting & polishing



中国CMS冬令营

Huaqiao Zhang

# ECAL Barrel



VPT







中国CMS冬令营

Module 400 crystal



### CMS电磁量能器的性能



Perfect calibration, no magnetic field, no material upstream, negligible irradiation, controlled environment



真实探测的性能受到探测 器响应的变化(温度,辐照, 老化),物理过程(堆积事 例,重叠...)

#### **Energy resolution**

central impact,  $3 \times 3$  barrel crystals [?][?]:





#### 中国CMS冬令营

35



### CMS 强子量能器



### Barrel (HB)

- 36 brass/scintillator wedges
- 17 longitudinal layers, 5 cm brass, 3.7 mm scintillator
- $\bullet |\eta| < 1.3$

Fun fact: much of the brass came from old WWII shells from the Russian Navy!



### Endcap (HE)

- Two brass/scintillator discs
- 19 longitudinal layers, 8 cm brass, 3.7 mm scintillator
- $1.3 < |\eta| < 3.0$



#### 中国CMS冬令营

#### Huaqiao Zhang



# CMS 强子量能器





中国CMS冬令营

Huaqiao Zhang



# CMS 探测器的设计:缪子探测器





Huaqiao Zhang



中国CMS



- Muon detectors are on the outside, so must be large
- Economics: use gas detectors to cover a large surface area
  - Need amplification of the electron ionization signal within the gas volume
  - Factors of 10<sup>5</sup>-10<sup>7</sup> are typical, using wires or parallel plates







- Four types of detector(since 2019, adding GEM):
  - Precise position measurement and triggering by Drift Tubes (DT) in the barrel, and Cathode Strip Chambers (CSC) in the endcap
  - Redundant triggering by Resistive Plate Chambers (RPC)
  - Adding Gas Electron Multiplier (GEM) in LS2 since 2019



Huaqiao Zhang





1800 V

- 240 chambers in CMS <u>barrel</u> 5 wheels
- Drift time measurement, gives distance (d) to wire to ~250 µm accuracy
   d = (T T<sub>0</sub>) x V<sub>drift</sub>



- 4 stations
  - **12** layers per station in groups of 4
    - 8 axial (r- $\phi$ ), 4 longitudinal (r-z)











**IHEP** 

- 540 trapezoidal chambers in CMS endcaps
- Electrons drift to wires, **induce** opposite charge on perpendicular cathode strips
- Precise ~2% interpolation of cathode charge on ~cm strips gives ~200 μm accuracy
- 6 layers: precision \u03c6 from cathode strips, coarse r and timing from anode wires







### CMS Resistive Plate Chambers (RPC)



**PKU** 

- 480 <u>barrel</u> and 576 <u>endcap</u> chambers
- Charge induced onto external strips
  - Resistive layer (Bakelite plastic) with  $\rho$ ~10<sup>10</sup>  $\Omega$ cm is transparent to signal as if infinite, quenches avalanche as if conducting
- Spatial resolution 0.8-1.2 centimeters
- Double gap, each 2 mm, 9.6 kV, for high  $\epsilon$
- Fast triggering







中国CMS冬令营

### **New Micro-Pattern Gas Detectors (MPGD):**<u>**GEM</u></u></u>**





Long (1.5< $|\eta|$ <2.2) and short (1.6< $|\eta|$ <2.2) version 36 superchambers in each endcap

### **GEM**: Gas Electron Multiplier



- Decouple amplification and detection
- High spatial and good time resolution

#### Installation in LS2 – first half installed in October 2019!







- The spatial resolution per chamber was
  - 80-120 μm in the DTs,
  - 40-150  $\mu$ m in the CSCs,
  - 0.8-1.2 centimeters in the RPCs

The  $\mu$  measurements improve the momentum resolution for  $p_T > 200$  GeV/c if the DT/CSC chambers are properly aligned

Especially for p<sub>T</sub>>1 TeV

Alignment is done with hardware sensors to <1 mm level, then track-based correction to chamber positions to ~10 µm level





# CMS 探测器的设计:触发与数据获取





Huaqiao Zhang



### CMS触发和数据获取系统







# CMS探测器与ATLAS的比较



|            | $ATLAS \equiv A$ Toroidal LHC ApparatuS                                                                               | CMS ≡ Compact Muon Solenoid                                                                                       |
|------------|-----------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| MAGNET (S) | Air-core toroids +<br>solenoid in inner cavity<br>4 magnets<br>Calorimeters in field-free region                      | Solenoid<br>Only 1 magnet<br>Calorimeters inside field                                                            |
| TRACKER    | Si pixels+ strips<br>TRT $\rightarrow$ particle identification<br>B=2T<br>$\sigma/p_T \sim 3x10^{-4} p_T \oplus 0.01$ | Si pixels + strips<br>No particle identification<br>B=4T<br>$\sigma/p_T \sim 1.5 \times 10^{-4} p_T \oplus 0.005$ |
| EM CALO    | Pb-liquid argon<br>σ/E ~ 10%/√E + 0.007<br>longitudinal segmentation                                                  | PbWO₄ crystals<br>σ/E ~ 3%/√E + 0.003<br>no longitudinal segm.                                                    |
| HAD CALO   | Fe-scint. + Cu-liquid argon (10 λ)<br>σ/E ~ 50%/√E ⊕ 0.03                                                             | Brass-scint. (~7 $\lambda$ +catcher)<br>$\sigma/E$ ~ 100%/ $\sqrt{E \oplus 0.05}$                                 |
| MUON       | Air $\rightarrow \sigma/p_T \sim 2\%$ (@50GeV) to 10% (@1 TeV)<br>standalone                                          | Fe $\rightarrow \sigma/p_{T} \sim 1\%$ (@50 GeV) to 10% (@1 TeV)<br>combining with tracker                        |





Use best meas. of individual particle in a jet (MET), ==> Particle Flow Algorithm Charged tracks: Tracker(60%); photons: ECAL(30%); Neutral hadrons (10%): HCAL





### **Welcome to CMS**





1086 collider data papers submitted as of 2021-12-10



所有这些产出都依赖我们的CMS探测器 更好的物理成果==》CMS 探测器 phase II 升级



![](_page_52_Picture_0.jpeg)

![](_page_52_Picture_1.jpeg)

![](_page_52_Picture_2.jpeg)

![](_page_52_Picture_3.jpeg)

![](_page_53_Figure_0.jpeg)

![](_page_54_Figure_0.jpeg)

![](_page_55_Figure_0.jpeg)

![](_page_56_Figure_0.jpeg)

![](_page_57_Figure_0.jpeg)

![](_page_58_Figure_0.jpeg)