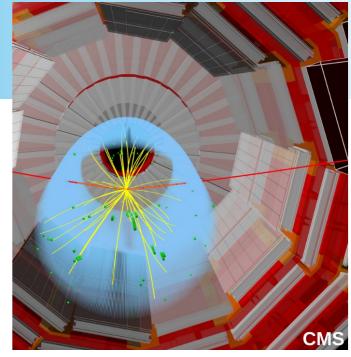


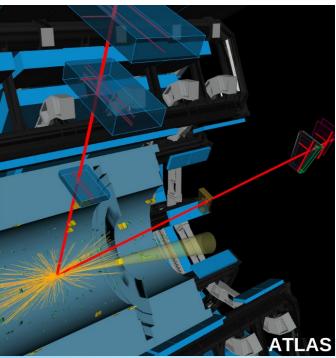
CMS winter school 2021

December 18-20 Peking University, China

Short exercise on muon studies

Measuring the muon selection efficiencies using Tag and Probe Method


Tahir Javaid (tahir.javaid@cern.ch) Beihang University, China


Outline

- Introduction to Muons
- **Motivation**: Why we measure muon efficiencies ?
- Tag and Probe **method**
- Muon Identification efficiency **measurement**

Muon

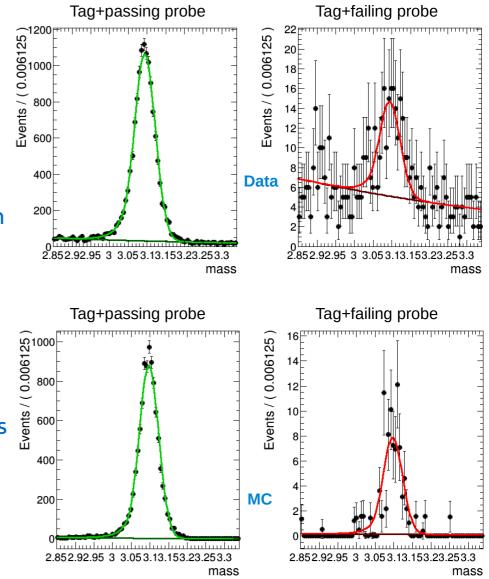
- Charged particle, just like electron and positron, but is 200 times heavier
- Produced in the decay of a number of potential new particles e.g. Higgs (H → 2mu)
 - Key object for various important measurements e.g. Higgs production cross section, mass, decay width and etc.
- Can penetrate several metres of iron without interacting, unlike most of particles
 - dedicated muon detection system in LHC experiments e.g. CMS, ATLAS, ALICE etc.
- In the detector, a muon is identified from its track information in the tracker and muon system alongwith its kinematics.

Please look for: Other decay mode(s) of Higgs where there is muon in final state.

Higgs decay in 2 muons (2020) link

Motivation for muon Efficiency measurement

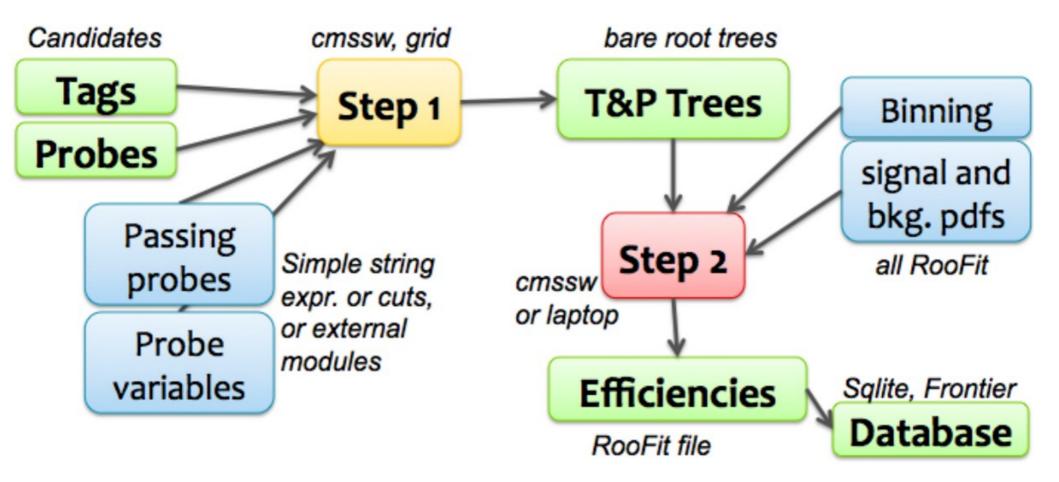
- MC does not describe the real data well
- In the measurement, MC is corrected with correction factors
- Done by measuring the selection efficiencies
- Correction factors are applied to MC


- Correction factor or Scale factor = $\frac{Selection efficiency data}{Selection efficiency MC}$

- After applying the correction factors, MC is supposed to match the data
 - Introduces **additional** uncertainty source to the measurement

Tag and Probe method

• Definitions:


- Tag muons are usually good quality muons matched to a dedicated muon Trigger
- Probe muons are inclusive calo. muons or just tracks in the tracker or the muon system
- Methodology
 - Processed data and MC samples of di-muon
 resonances e.g. Z, J/Psi, Y (root files)
 - Possess all possible information e.g. muon kinematics (root branches)
 - Definition of Tag and probe muons
 - Compare the muon from the probe muon pool with tag muon
 - Grab passing and failing probes
 - Construct mass distribution of tag+passing probe and tag+failing probes
 - Fit the distributions using suitable polynomials (RooFit) in bins of pt or eta
 - Compute the integral from fit in each bin
 - Efficiency is defined by:
 - € = (probes passing the selections) / all probes

Do you know?

Why do not we consider simple cut and count method to compute efficiencies and instead we fit the distributions ?

Overall Workflow

Hands-on Exercises

- Dump object information from CMS official dataset
 - Get object info from CMS 2017 Jpsi datasets
- Prepare the tag & probe root files
 - Select preliminary tag & probe pair.
- Exercise1
 - Measure muon Loose ID efficiency
- Exercise 2
 - Measure muon Medium ID efficiency
- Exercise 3
 - Add more systematic sources in Exercise 1 and Exercise 2

Link to muon IDs definitions

Hands-on Exercises : Setting framework and running

- 1 ssh -XY username@hepfarm02.phy.pku.edu.cn -p 9002
- 2 mkdir muon; cd muon
- 3 source /cvmfs/cms.cern.ch/cmsset_default.sh # repeat with every login
- 4 cmsrel CMSSW_10_2_5
- 5 cd CMSSW_10_2_5/src
- 6 CMSENV # repeat with every login
- 7 cp -r /data/pubfs/pku_visitor/tahirjavaid/pek_school/material/TnP-scripts .
- 8 cp -r /data/pubfs/pku_visitor/tahirjavaid/pek_school/material/HiggsAnalysis .
- 9 cp -r /data/pubfs/pku_visitor/tahirjavaid/pek_school/material/samples.

10 scramv1 b # setup complete! Now ready to do measurement

- 11 cd TnP-scripts # navigates to the directory containing the scripts / macros
- 12 sh runTnP_MuPOG_jpsi.sh # performs data and MC fits and computes efficiencies
 - **Please note:** Output of this step is the input to the next step.

13 sh harvestTnP_MuPOG_ID_2017.sh # adds systematic sources and computes efficiency ratios

Please note, "#" is to add comments, do not include it and the text after it in command line

Exercise 1: Measuring Loose ID efficiency (2017)

- **Data**: 2017 Run BCDEF re-reco (twiki page for details)
- MC: eos/cms/store/group/phys_muon/TagAndProbe/Run2017/94X/JPsi/MC/TnPTreeJPsi_94X_J psiToMuMu_Pythia8.root
- Tag Selection: tag_pt>8 && abs(tag_eta)<=2.4 && tag_Tight2012 && tag_Mu7p5_Track2_Jpsi_MU
- Probe Selection: general tracks (all probes), muonPOG Loose ID (passing probes)
 - Loose ID efficiency = <u>all probe muons i.e. passing probes + failing probes</u>
- Systematic variations
 - 1) Choice of PDFs: Default = JDGauss, expo Alternate= JCB, bern5
 - 2) Number for mass bins: Default = 40, Extended = 45, Reduced = 35
 - 3) Mass range: Default = 2.9-3.3, Extended = 2.95-3.25, Reduced = 2.85-3.35

Do you know what information about MC sample can be extracted from its root file name? TnPTreeJPsi_94X_JpsiToMuMu_Pythia8.root

Looking at macro: runTnP_MuPOG_jpsi.sh

- Exploit the core **tnpEfficiency.py** script which helps to fit the dimuon distributions of tag+passing probe and tag+failing probe, and compute the efficiencies in data and MC
- Provides it with several **inputs** e.g. data and MC samples, tag and probe muon definitions, bins of pT, signal and background PDFs and etc.

#!/bin/bash
PDIR="test/"
JOB="mupog Recold" ## FULL DATA & MC
XBINS="[3,4,5,6,7,8,10,12,15,20]"
<pre>Elims="[-2.4,-2.1,-1.6,-1.2,-0.9,-0.6,-0.3,-0.2,0.2,0.3,0.6,0.9,9,1.2,1.6,2.1,2.4]" WENMs="[0.5,5.5,6.5,7.5,8.5,9.5,10.5,11.5,12.5,13.5,14.5,15.5,17.5,20.5]" WENMS="[0.5,5.5,10.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,10.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,10.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,10.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,10.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,11.5,12.5,13.5]" WENMS="[0.5,5.5,11.5,12.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5,13.5]" WENMS=[0.5,5.5]] # # # # # # # # # # # # # # # # # #</pre>
python tnpEfficiency.py \$PDS -d "abs(eta)<1.2 && \$DEN" -n "\$NUM" \$OPTSx-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${BMOD}^\${DOST}_\${ID}_barrel -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)" = python topEfficiency py \$PDS -d "abs(eta)>1.2 && \$DEN" -n "\$NUM" \$OPTSx-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${BMOD}_\${DOST}_\${ID}_endcap -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)" = python topEfficiency py \$PDS -d "abs(eta)>1.2 && \$DEN" -n "\$NUM" \$OPTSx-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${DOST}_\${ID}_endcap -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)" = python topEfficiency py \$PDS -d "abs(eta)>1.2 && \$DEN" -n "\$NUM" \$OPTSx-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${DOST}_\${ID}_endcap -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)" = python topEfficiency py \$PDS -d "abs(eta)>1.2 & \$PDS -x-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${DOST}_\${ID}_endcap -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)" = python topEfficiency py \$PDS -d "abs(eta)>1.2 & \$PDS -x-var pt \$XBINS -N mu_\${SMOD}_\${ID}_{DOST}_{ID}_{ID}_{ID}_{ID}_{ID}_{ID}_{ID}_{ID
python tnpEfficiency.py \$PDS -d "abs(eta)>1.2 && \$DEN" -n "\$NUM" \$OPTSx-var pt \$XBINS -N mu_\${SMOD}_\${BMOD}_\${POST}_\${ID}_endcap -b \$BMOD -s \$SMOD \$MASSxtitle "p_{T} (GeV)"; python tnpEfficiency.py \$PDS -d "pt > 7 && \$DEN" -n "\$NUM" \$OPTSx-var eta \$EBINS -N mu \${SMOD} \${BMOD}\${POST} \${ID} pt7 -b \$BMOD -s \$SMOD \$MASSxtitle "#eta";
<pre># python tnpEfficiency.py \$PDS -d "pt > 7 && \$DEN" -n "\$NUM" \$OPTSx-var eta \$EBINS -N mu_\${SMOD}_\${POST}_\${ID}_pt7 -b \$BMOD -s \$SMOD \$MASSxtitle "#eta"; # python tnpEfficiency.py \$PDS -d "pt > 7 && \$DEN" -n "\$NUM" \$OPTSx-var tag_nVertices \$VBINS -N mu_\${SMOD}_\${BMOD}\${POST}_\${ID}_pt7_vtx -b \$BMOD -s \$SMOD \$MASSxtitle "N(vertices \$VBINS -N mu_\${SMOD}_stand)\${POST}_\${ID}_pt7_vtx -b \$BMOD -s \$SMOD \$MASSxtitle "N(vertices \$VBINS -N mu_\${SMOD}_stand)\${POST}_\${ID}_pt7_vtx -b \$BMOD -s \$SMOD \$MASSxtitle "N(vertices \$VBINS -N mu_\${SMOD}_stand)\${POST}_stand)</pre>

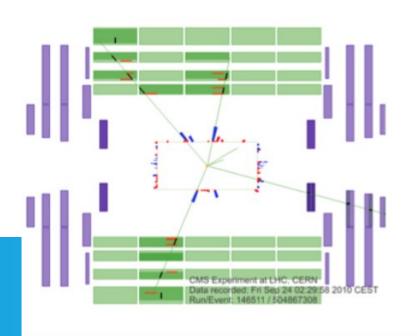
How will you modify the macro to measure Medium ID efficiency?

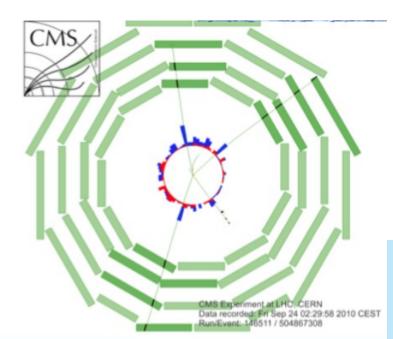
Looking at macro: harvestTnP_MuPOG_ID_2017.sh

- Exploit the core **tnpHarvest.py** script which is capable to add systematics to bin by bin data and MC efficiencies and computes their ratio with overall uncertainty
- Provides it with **inputs** of systematic sources

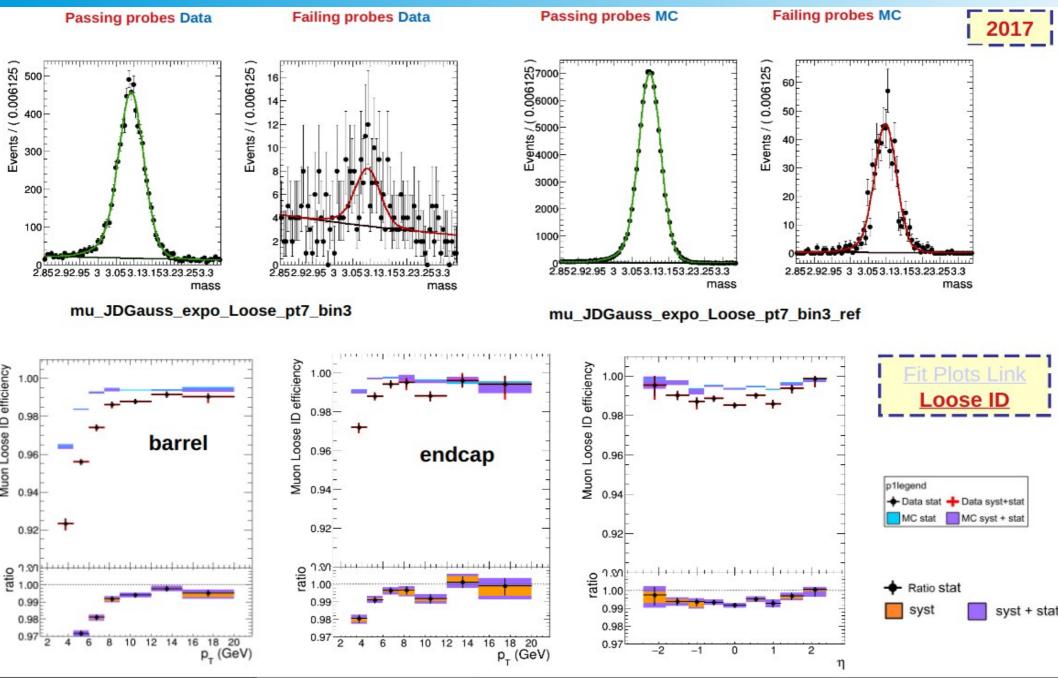
```
#!/bin/bash
P="test"
IN="mupog_RecoId"
#MEAS="mu Loose mu Medium mu Tight2012"
                                                              ##can be the type measurement ......0K
MEAS="mu Loose"
                                      ##can be the type measurement .....0K
for sig in JDGauss JCB: do
   for bkg in bern3 expo; do
        for salt in JDGauss JCB; do
           if [[ "$salt" != "$sig" ]]; then
           for balt in bern3 expo ; do
               if [[ "$balt" != "$bkg" ]]; then
               if [[ "$1" != "" ]]; then MEAS="$*"; fi
               for M in $MEAS; do
                   case $M in
                       mu_Loose) MODS=" -s "${sig}" -b "${bkg}" --balt "${balt}" --salt "${salt}" "; #
                        mu Medium) MODS=" -s "${sig}" -b "${bkg}" --balt "${balt}" --salt "${salt}" "; #
                        mu Tight2012) MODS=" -s "${sig}" -b "${bkg}" --balt "${balt}" --salt "${salt}" "; #
                        mu Loose) MODS=" -s "${sig}" -b "${bkg}" --balt "${balt}" --salt "${salt}" --alt massExtended --alt massReduced --alt binsExter
nded --alt binsReduced ";
                       OUT="$IN/${M}_2017_harvest_${sig}_${bkg}_${salt}_${balt}_mupogSysts"
                       TIT='Muon Id efficiency' ;;
                   esac;
                   OPTS=" --doRatio --pdir ${P}/$OUT --idir ${P}/$IN --rrange 0.97 1.01 --yrange 0.9 1.01 "; XTIT="p {T} (GeV)"
                   for BE in barrel endcap; do
                       python tnpHarvest.py -N ${M}_${BE} $OPTS $MODS --ytitle "$TIT" --xtit "$XTIT"
                   done
                    python tnpHarvest.py -N ${M} pt7 $0PTS $MODS --ytitle "$TIT" --xtit "#eta"
                    python tnpHarvest.py -N ${M} pt7 vtx $0PTS $MODS --ytitle "$TIT" --xtit "N(vertices)"
               done
               fi:
done
done
done
                                                                                                                                               A11
"harvestTnP_MuPOG_ID_2017.sh" 35L, 1886C
                                                                                                                                  1.1
```

Output (fits of distributions and efficiency plots) is stored in "test/mupog_Recold/" directory 11




Muon Reconstruction and Identification at CMS

- Independent reconstruction: tracker track and standalone muon track
 - Global muon refitted using hits from two trackers using Kalman filter techniques
 - Tracker Muon: tracker track with at least one matching segment
 - Dedicated algorithms for high-pT muons (TPFMS,Picky)
- Robust and efficient muon reconstruction
 - 99% efficiency within acceptance
 - Candidates with same inner track merged into one collection


Identification

- Tight: global muon reconstruction + quality criteria on hits, segments and impact parameters. Used for most analysis like W/Z or Higgs.
- Soft: tracker muon matched with muon segment not used for other muon tracks, dedicated for muons with pT<10 GeV.

How final efficiency plots look like

eta bins= [-2.4,-1.8,-1.2,-0.8,-0.3,0.3,0.8,1.2,1.8,2.4]

pT Bins=[3,4.5,6,7.5,9,12,15,20]