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Top-Higgs Yukawa Interaction

e Yukawa interaction a fundamental interaction of the Standard Model (SM)

e Inthe SM, the Yukawa coupling between the Higgs boson and the fermion is
proportional to the mass of the fermion
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Direct probe of the top-Higgs Yukawa interaction

e Using ttH production is the most direct way to
probe the top-Higgs Yukawa interaction

e Production cross section for ttH at the 13 TeV LHC
is ~0.5 pb, corresponding to ~1% of the total Higgs
bosons produced
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Why studying top-Higgs interaction

A basic test of the Standard Model
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Why studying top-Higgs interaction

e A basic test of the Standard Model
e Opens up new opportunities to probe BSM physics, a few examples:

1. Measure the t-H Yukawa properties, test if there is small deviation from the SM
2. Use ttH production as a handle to better constrain the H trilinear self-coupling
3. Direct search of BSM t-H interactions
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Why studying top-Higgs interaction

e A basic test of the Standard Model
e Opens up new opportunities to probe BSM physics, a few examples:

1. Measure the t-H Yukawa properties, test if there is small deviation from the SM
2. Use ttH production as a handle to better constrain the H trilinear self-coupling

3. Direct search of BSM t-H interactions

In this talk, | will discuss recent Run 2 results from the CMS
experiment featuring the studies of top-Higgs interaction using the

Higgs to diphoton decay channel



The LHC kept high performance during Run 2
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Results presented later are based on 137fb™' of data that CMS collected during Run 2



The CMS detector

CMS DETECTOR ST RE TR TORE

Total weight : 14,000 tonnes 12,500 tonnes SILICON TRACKERS
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ttH(H—vyy) analysis: a brief introduction
e Fit diphoton invariant mass distribution to extract
parameters of interest
o e.g., cross section, CP structure

e Utilize signatures from ttbar decay to improve S/B

o Jet/lepton multiplicity

o Jet triplet consistent with top quark decay

o Event kinematics and flavour tagging information that are

sensitive to differences between signal and background

Hadronic top decay:
no isolated lepton

Leptonic top decay:
1 isolated lepton




CMS 137 fb~! (13 TeV)
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Main backgrounds T T
Leptonic
Use photon ID BDT score
e ttbar + diphoton to suppress background —) o
e ttbar + 1/0 photon with fake photons
Hadronic ::fb(oe)
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e Multi-jet + diphoton Use jet multiplicity and i i = ——
e Multi-jet + 1/0 photon b-tagging score of —)
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e ttbar + 1/0 photon non-ttbar background U

DeepCSV discriminator
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Extra handles

Top-quark tagger (BDT)

e To further reduce multi-jet background
e Retrained version based on the one used in JHEP10 (2017) 005

e Trained on ttbar MC simulation, exploits properties of three-jet candidate
o Kinematic properties of the constituents, quark-gluon discrimination metrics, flavour tagging

Dedicated Deep Neural Networks (DNNs)

e To fight against the ttbar + diphoton and multi-jets + diphoton

e Train a dedicated DNN for each with signal and background MC simulation

o Utilize low level information such as full four-vector of leading jets/leptons, flavour tagging

information and other event level kinematic properties
11



BDT-bkg performance

Lcms 137 fb" (13 TeV) CMS wrnaaTey) ®  Events are either rejected
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S/(S + B) Weighted Events / GeV

PhysRevl ett.125.061801

Cross section measurement
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Observed (expected) significance: 6.60 (4.70)

First observation of the ttH production in a

single Higgs decay channel
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What is new in this result

e In 2018, CMS released a ttH(H—Yy) measurement with partial Run 2 dataset
(77fb1/137fb"), explobs significance: 2.70/4.1c (CMS PAS HIG-18-018)

e If considering only statistical effect (with ~2 times more data), naively one

would get 3.60 expected significance with full Run 2 dataset
e Inthe end, we got 4.70 expected, that is 30% improvement in sensitivity
o Better control background estimation when training the BDT, especially using
data-driven y+jets to improve training statistics in hadronic channel
o Better utilization of modern machine learning techniques: both the analysis
level BDTs and introduced various useful input features (hadronic top-tagging
BDT, dedicated DNNs for difficult backgrounds)
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What else can we learn from these ttH events
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e Probe the CP nature of top-Higgs interaction, can either use extra information from
the events (e.g. Higgs pT spectrum) or build dedicated discriminant to distinguish
different CP hypotheses 15
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CMS H— yy Run 2 legacy result
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e Under the simplified template cross section (STXS) framework, produced a

comprehensive measurement of the Higgs boson properties with H — yy
channel (signal strength, STXS stage 1.2, coupling modifier) with the full Run
2 dataset (2016 + 2017 + 2018) JHEP 07 (2021) 027
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Ratio to SM

ttH production under STXS stage 1.2
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CP measurement result
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First test of CP structure of the Htt coupling
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Use ttH process to probe the H self-coupling

BSM SM
Onwo - 1OnLo

2
V= %ﬁhQ + Aguh® + %‘*—h‘*

e Understanding the shape of the Higgs potential is one of the most important
goals of the HL-LHC physics program

e Both the HH and H production cross section depends on K,

e In the case of anomalous values of k,, which are signs of new physics, the
single H process with the largest modification of the cross section is ttH 19




JHEP03(2021)257

Application in CMS Run 2 HH—bbyy result
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One of the most sensitive channels to HH 14
production due to large Br(H—bb) and good 1}
mass resolution of the H — yy channel =

68% 68%

e Additional orthogonal categories targeting the ttH process are included

e ttH leptonic and hadronic categories are developed and optimized for the
measurement of the ttH production cross section

e The sensitivity of constraining k, increases by 5% when fitting the HH

and ttH categories simultaneously 20
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Direct search of BSM t-H interactions (e.g. FCNC)

Status of top FCNC results as in 2019

ATLAS+CMS Preliminary 952%CL upper limits
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Search strategy
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CMS-TOP-20-007

In a recent search of t-H FCNC
based on H—yvy, the strategy is
largely based on previous SM
ttH(H—yy) measurement
Utilize multiple methods
(MVA+kinematic fit) trying to
reconstruct the top candidate
Use two dedicated BDTs targeting
both non-resonant background
(ttbar, GJets etc) and SM Higgs
backgrounds (ttH)
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CMS-TOP-20-007

New CMS limit with using Run 2 dataset
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e The observed (expected) upper limits on B(t — Hu) and B(t — Hc) are 1.9 x 10~
(3.1 x10™)and 7.3 x 107 (5.1 x 107*), respectively

e Current world’s best limits, almost an order of magnitude better than previous
results with partial (2016) Run 2 data combination (H—yy + H—bb + H—leptons)*
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The upgrade of DAQ electronics of CMS endcap
muon system



The HL-LHC upgrade
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PHYSICS

of HL-LHC

e Despite the success of LHC Run 1 and Run 2, there are still fundamental
physics questions unanswered, many of these searches are limited by statistics,

their sensitivity increases in proportion to the integrated luminosity
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The CMS phase |l upgrade

Key parameters that drive many of the
Muon System Barrel Calorimeter

* New DT/CSC BE/FE electronics * New BE/FE electronics
* GEM/RPC coverage in 1.5<|n|<2.4 « ECAL: lower temperature C M S p hase I I u pg rad €

* Muon Tagging 2 _: V ,‘5 « HCAL: New Backend electronics o L1 A rate: 1 OO kHZ N 750 kHZ

/

/ * High-granularity calorimeter o L1A Iatency: 32 MS - 125 MS

* Radiation-tolerant scintillator
+ 3D capability and timing

o Higher pileup interactions: ~200
e The implications on the upgrade are:

Track . . .
v, Radistoniolerant. High 7) 7 - o Higher granularity of detecting module
granularity, low material ///’\ ¢ - | Trigger and DAQ Precise tlmlng resolution
budget N\ I+ Track-trigger at L1 o
« Coverage upto|n|=3.8 & /)&4\‘ ‘% ‘] L1rate ~750kHz ;
- ' (n/<2.4) JMIP TIMING DETECTOR | S8+ HLT output ~ 7.5kHz o Increased TDAQ bandwidth
Coverage eta < 3. Barrel: | -

7 A

LYSO:CE crystals SiPM.
EndCap: Silicon Sensors
(LGAP). Timing ~ 30-40ps

e Radiation hardness of the sensors and

front-/back-end electronics are also
important factor to consider due to high
radiation at the HL-LHC condition 26



The CMS phase |l upgrade

[
Muon System Barrel Calorimeter
* New DTM * New BE/FE electronics
* GEM/RPC coverage In 1.5<[n[<2.4 « ECAL: lower temperature
* Muon Tagging in 2.4 <|n|<2.8 . HCAL: New Backend electronics
& * High-granularity calorimeter
= >+ Radiation-tolerant scintillator
, /{l / « 3D capability and timing
. ' |
Ny o
Tracker | Y oy
« Radiation tolerant, high / g
granularity, low material . ///l ’f Trigger and DAQ
budget / A?/» [ e |+ Track-trigger at L1
« Coverage upto|n|=3.8 g AC L8 s - L1rate ~ 750kHz
kF > L1 » §MIP TIMING DETECTOR * HLT output ~ 7.5kHz
Coverage eta < 3. Barrel: | — r—
LYSO:CE crystals SiPM. - .
EndCap: Silicon Sensors L

(LGAP). Timing ~ 30-40ps

Next will discuss the upgrade of CSC readout
electronics for phase Il that | am working on

Key parameters that drive many of the

CMS phase |l upgrade

o L1Arate: 100 kHz — 750 kHz

o L1Alatency: 3.2 us — 12.5 us

o Higher pileup interactions: ~200
The implications on the upgrade are:

o Higher granularity of detecting module

o Precise timing resolution

o Increased TDAQ bandwidth
Radiation hardness of the sensors and
front-/back-end electronics are also
important factor to consider due to high
radiation at the HL-LHC condition 27
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A brief introduction of the CSC system
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A brief introduction of the CSC system

CSC stands for: Cathode Strip Chamber,
based on multi-wire proportional chambers
540 in total installed on both endcaps of CMS
Crucial for muon triggering and identification at
high |n| region (0.9 < |5| < 2.4)

*,_muon
cathode [ ]

wires © o o o 0 0.0 © 0 0 O O©

cathode [ ]

6 such layers per CSC

induce%

o  Time resolution ~3.4 ns; position resolution ~50-145 ym  cathode | | | | | '

Finely segmented cathode strips for measuring
muon position in the bending plane

strip ‘avalanche

wires

cathode [ |

Anode wires run azimuthally and provide a

coarse measurement in the radial direction

Working gas: 40% Ar + 50% CO2 + 10% CF4
Nominal HV: 3600V/2900V

29




The DAQ boards for CSC

AFEBs L1A

I ALCT | LVDB

TTC

Iron yoke
Peripheral crate

AFEBs

(VME)

VCC
—] CCB
MPC

AFEBs

| CFEB | I CFEB I
T

I CFEB | | CFEB I CFEB |
AT L
]

.

[=]E]es]

9xTMB

USC

FED crate (VME)
12xDDU
Q

During Run 1, each CSC sends DAQ data to a
Data acquisition MotherBoard (DMB), which
then passes the data to next stage of DAQ
DMB is also responsible for slow control of
front-end electronics, rely trigger signals, LV
control of the CSC system

30



The DAQ boards for CSC

AFEBs

ALCT S6)

AFEBs

AFEBs

LVDB7

DC!-EB DCFEB

DCFEB DCFEB

DC FEB DC FEB

|DCFEB|

LIA

TTC

l

Peripheral crate

Iron yoke

(VME)

ME1/1 chambers

VCC

|

CCB

MPC

|
USC

=)

9xOTMB

FED crate (VME)
12xDDU

* DCFEB has a larger internal buffer thanks to a more
advanced FPGA, thus reduce the risk of data loss due to
high instantaneous luminosity, it also sends DAQ data
via optical fibers instead of copper cable as in CFEB

During Run 1, each CSC sends DAQ data to a
Data acquisition MotherBoard (DMB), which
then passes the data to next stage of DAQ
DMB is also responsible for slow control of
front-end electronics, rely trigger signals, LV
control of the CSC system

In LS1, as a consequence of the Cathode
Front-End Board (CFEB) being upgraded to
the Digital CFEB (DCFEB) *, the DMB was
upgraded to Optical DMB (ODMB) for CSCs

closest to the interaction point o



Examples of DMB and ODMB

Spartan 2
Control FPGA

Spartan 2
VME FPGA

HD22 connector
to LVMB

VME
backplane
connector

2

2

O ©n

om

£ Backplane

30 connector to
= TMB/CCB

a

jas

s

CE e e
0SU CMS DAQMB

1.6 Gb/s link
to DDU

A\ 4

40 cm

DMB (468 in total)

XCF128X  Virtex-6
PROM FPGA

HD50 to VME
LVMB7 backplane
connector
HDS50 to DCFEBs
G = Backplane
Snap12 RX from — connector to
DCFEBs (data) i | I : OTMB/CCB

HDS50 to DCFEBs
(TTC)

TXs to DDU/ | &
PC (data) ]

ODMB-2013 (72 in total)
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Motivation for the new ODMB (ODMB?7/5)

Data rates from (O)DMB to BE
£=7.5x%x103s"1cm=2 (PU200)

The DAQ data rate of CSC
is driven by the event size
and L1A*local trigger rate ol .

*  HL-LHC expected rate
~——— Phase-1 bandwidth
-~~~ Phase-2 bandwidth

At the HL-LHC condition,
not only the L1A rate
increases, the local trigger

Upgrade

Gb/s

109 - T
Phase-1 bandwidth

rate also increases due to
higher background rate in
the CMS cavern

-1

(1.28 Gb/s)
Phase-2

DAQ rate

ME1/1 ME2/1 ME3/1 ME4/1 ME1/2 ME2/2 ME3/2 ME4/2 ME1/3

Chamber position

Due to the increased data rate at HL-LHC, the (O)DMBs serving CSCs closest to
the beam pipe will be upgraded to the new ODMB7/5 => increase bandwidth
In addition, the new ODMBY7/5 also provides promless programing option for the

front-end boards, in case their EPROMs stops working due to high radiation >



Major milestones of the ODMBY7/5 project

2019 2020 2021 2022 2023 2024 2025 2026 2027

J[FIMAIM3[3]Als]oNID{ 3 ]FIMAM] 3]3]A[S|OIN[Dfa [FIMAMI3[3]Als|OIN[D] 3 [FIMIAIM]3 |3 ]Als]oNID{ 3 [FIM[AIM] 3 ]3|A[S|OIN[D 3 [FIMAIMI3 [ 3]AlS|oIN[D] 3 [FIMAIM 3 [ 3 ]A[s]oNID| 3 [FiMAIM] 3 [3 |A[S|OIN[D 3 [FIMAMI [ 3]AlS[ON

| il | ,, | L
Long Shutdown 2 (LSZ)} Run3 | Long Shutdown 3 (LS3)

T [1] NRRRRRNNNNRNRRRERENY
A 44

ODMBY7/5 ready for installation ODMBY7/5 need by date

ODMB5 schematic/layout

Shutdown/Technical stop
. Protons physics
4 ODMBY7 prototypes delivered Ions
Commissioning with beam
ODMB7 Iayout released Hardware commissioning/magnet training

ODMBY7 schematic released 34



Highlights of the new ODMBY7 design

h%
®
@
N
[9)
%

<
w

,/ | xDCFEB

XxDCFEB

i

xDCFEB

—| xDCFEB

g

ODMB7 Data Flow: s T
New Kintex ultrascale FPGA ( TEAE ol s, T
New firefly optical transceivers e L L
Allows promless-programing of | | T @ e B e
front-end boards 5 2 e m
Use a frequency synthesizerto & et
provide reference clocks for optica Hﬂl?ﬁ;}
transceivers weaa [

5 ODMB7

i

XxDCFEB

—| xDCFEB

t

XxDCFEB

[

ALCT

LX100

<1@4.8 Gbps

The design is very different from current ODMB, with many new features

Frontend
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ODMB7 schematics and Iayout

16 Iayers

VME Interface - Connectors and Buffers

[oeas]  [wess]

L

—
Liio B A

Hi

CcCB Inten‘ace

ODMB<—— CCB

'''''

OTMB Interface

I FPGA Transceivers

SN 11118

PHYSICS DEPARTVENT

The schematics and layout were designed by engineers and reviewed by
other project members (postdocs, PhD students)
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ODMBY7 prototype

Clock USB interface

To/From LVMB L Discréte
Tlogic = = <P \/ME (control)

(Low voltage control)

JTAG (Debug)
Clock USB (Debug) Power

distribution

ccB
(Clock/trigger)

<= TMB (trigger)

To/From PPIB

(DCFEB TTC) .
(Timing Trigger and Control) '\1

To/From FED -1
(DAQ, PROM-less, back-pressure) Hlf in
To DCFEB/ALCT (PROM-less) G W i
From DCFEB/ALCT (DAQ) =11 [

Veltage monitg
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Setup at UCSB lab

38
ODMBY7 prototype



Operation mode during covid

04-15 1 47 i o= - | - .
e el i e 3 H gs =
4 'R S s S :
(i i f [} [ |
- X h") A -
o ey \ b= i A
-ty i 9 g | { ) R g §
4 \ \ .l - B i 2 ,l‘{_‘] | -
i
1
=

HualinMei |  Sicheng Wang

Prasanna Sidd...

i o

@

e After the prototypes were delivered to UCSB, project members from 4 different
time zones (California, Ohio, CERN, South Korea) held extensive debugging
sessions via zoom

e A number of small issues were identified, temporary fixes were made on the
boards and will be fixed for the pre-production ”



Firmware development (interfaces)

e Started with developing
firmware for major interfaces
that ODMBY7 use to interact
with and other boards

Board to board optical communication

at 12.5Gb/s

*k%%%% ODMB Vitals:QPLL UNLOCKED **¥¥%xx

R 4100 FFFO0 Unigue ID
R 4200 D3B7 FW version. Date 10/07/2020
R 4300 D3B7 FW build

CONtYol *wwwswwnwx

DCFEB 1 irmware 6.
DCFEB 2 je. Firmware 6.
DCFEB 3 irmware 6.
DCFEB 4 irmware 6.
DCFEB 5 Code. Firmware 6.
DCFEB 6 irmware 6.
DCFEB 7 irmware 6.2E

o

EXRNRAAFEY DOCFEB Pulges TEEXFERENE

DCFEB 1: 5/5, 5/5

DCFEB 2: 5/5, 5/5 £
DCFEB 3: /S, 5/5 5
DCFEB 4: /S, 5/5 (S,
DCFEB 5: /S, 5/5 /5.
DCFEB 6: /S, S/5 5.
DCFEB 7: S, 5/5 5.

Ydokddokkk %k OTMB PRBS TestT ¥ wiiww
Number of PRBS sequences: 100

PRBS seguences matched: 9
PRBS bit errors: 100 (exg

Kkkkkkkekk CCB ZE;iST_Q:S Tests Wk kk ke k
Repeated test 100 times. No BAAD reads or bit flips in 10

)0 voltages per device. Voltage reading: 4200/4200.

signals and registers.

PASSED
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Firmware development (DAQ)

e Recently developed

time 1 H
| VME backplane | N'= 1 (ALCT) + 1 (OTMB) + nDCFEBS, nDCFEBs <=7 the basic DAQ logic
z <+—ALCT/OTMB data cafifo_l1acnt ~~. cafifo depth = 128 for ODMB7
8 delayed I1a (fifo_push) cafifo_lTamatch(9) - - a add an entry when there is l1a
= cafifo_bx "’ _
cafifo_lone e . ]
cafifo_lTadav(9) |/ |Follow the order of alct-otmb-dcfeb, if . @ CheCk behaV|Or N
a cafifo_pkglost(9) / ' I1aNotMatch/pkglost/killed then go to next board,,
2 . .
i) “dout g - Ik there s ey, get o, o damanfor ,' simulation by
—] header H_ct data I>|otmb datap|dcfeb data[ tailer |

comparing signals
against current
ODMB simulation

e The ODMB7 DAQ
firmware works in
simulation

ODMB simulation ODMB7 simulation 41



First time DAQ with new ODMB?7

CSC Event Display Crate ID = 12, DMB ID = 03 e FEarlier this month, with a real
— | . CSC chamber at CERN

testing site, we are able to
take cosmic data with the
new ODMBY7 for the first time!

Chamber ME+1/1/35 Event #10000

T EEEEE
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. _muon
cathode g

First time DAQ with new ODMB7 -~ "

CSC Event Display Crate ID = 12. DMB ID = 03 induced charge
Run#: Time: Mon Oct 18 11:54:35 2021 Anode data, for cathode  —]

. strip lanch
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' cathode )
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. muon
cathode —

First time DAQ with new ODMB?7 RS Sh

Ky

CSC Event Display Crate ID = 12. DMB ID = 03 Cathode data, for induced charge

cathode mm T T )

Chamber ME+1/1/35 Event #10000

strip davalanche

Run#: Time: Mon Oct 18 11:54:35 2021 .
trigger

wires

Anode Hit Timing and Quality

[eE T8 TeTe Lol o ————

[ TMB-CLCT: Cathode C

[ Run#:_Time: Mon Oct 18 11:54:37 2021
Layer=1 Layer =2 Layer=3

ator Hit O y per Half Strip Crate ID = 12. DMB ID = 03

P F

Effciency (% of otal DMB events)
Effciency (% of otal DMB events)
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Layer =4 Layer=5 Layer=6
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8
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First time DAQ with new ODMB7 RS Sh
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CSC Event Display Crate ID - 12. DMB ID - 03 induced charge

Run#: Time: Mon Oct 18 11:54:35 2021 Cathode data, for cathode IEEEE TS NN G

strip davalanche

Chamber ME+1/1/35 Event #10000

wires
Anode Hit Timing and Quality

' [eE T8 TeTe Lol o ————
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} .

) | CFEB: SCA Active Strips Occupancy Crate ID = 12. DMB ID = 03
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The future of the ODMB7/5 project

T L 3
—_—
U -im I“
.

(TP12)

Currently we are finalizing the development of 7‘
ODMBY7 firmware 5 '/

Lo D ebug port (LC)

The ODMBS prototypes are expected to arrive late
2021/early 2022 .. Spare MPC cable

LC

Prepare software for production test
Expect to put one ODMBY7 prototype as a ?R?JlrJB)
demonstrator in CMS at one Year End Technical Stop
In the end, will produce 72 + 108 + spares = 180+

new boards for the phase || CMS detector

ATCAFED 46



Summary

Since of observation of ttH production in 2018, studying the top-Higgs
interaction has become one of the most important physics topics at the LHC
Other than examining the nature of top-Higgs interaction, this talk has also
summarized 3 examples to explore potential BSM physics

Better constrain HH  ga51ch for top-Higgs
trilinear self-coupling gcne process

(-

The DAQ electronics of the CMS endcap muon system needs to be upgraded
for HL-LHC, the development of new ODMB7/5 has been a success so far,
more exciting time is ahead of us 47




Backup
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CP structure of the Htt coupling

By probing the interaction between the Higgs boson and vector bosons, CMS
and ATLAS have determined that the H quantum numbers are consistent with
JPC = 0++

However, the CP structure of H couplings to fermions has never been tested
The CP structure of the Htt amplitude can be parameterized as:

my ™
\

CP even yukawa coupling CP odd yukawa coupling *InSM, k; = land Ry =0

H &, e
Experimentally, we can test the CP structure by measuring fer' = m sign(&y/ k)
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CP measurement strategy

e In principle, one can use matrix element based

0.14— —
technique to distinguish CP-even from CP-odd orf g cPeven
hypothesis ot S

e This may not be practical for studying ttH, given 0-0832% T2
the final state particles can be either mis-tagged ~ **[} [™ E
or not reconstructable Lt

e In practice, two BDTs were used in both Hadronic 0'02%";.:‘ PP
and Leptonic channels to separate CP-even from E‘Z\ = (340 oo

o Utilize kinematic properties of jets/diphoton, b-tagging e ik

information and lepton multiplicity as input variables
PhysRevD.94.055023



https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.94.055023&v=d1703751

On the other side of the ring

ATLAS submitted a similar paper about ttH (H—vyy) and its CP study two

weeks later, with very similar strategy and results

CMS (arXiv:2003.10866)

ATLAS (arXiv:2004.04545)

O~ BR 1.5610:3 b NA

My 1.3870% (stat) 03] (syst) | 1.4 + 0.4(stat) & 0.2(syst)
Obs (exp) significance 6.6 0 (4.7 0) 5.20 (4.4 0)
ugg\exdugonat95%>CL 0.67 0.47

Pure CP-odd exclusion, 3.20 (2.6 0) 3.90 (2.5 0)

obs (exp)
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Data-driven estimation of multijet + photon

+1

Events entering presel.

e One of the main backgrounds in hadronic channel:

. Low photon ID sideband
Min. gamma IDMVA

multijet + photon

o Poorly modeled by MC simulation _,

+1

Max. gamma IDMVA

o  Suffer from low statistics for BDT-bkg training
e Model this background with a data sample

o One photon candidate failing photon ID BDT requirement

o Almost exclusively jet faking a photon

e Replace the failing ID value in each event

o Use a value drawn from a MC distribution

Min Photon ID in MC
52



* JINST 10 P04015

ttH cross section extraction

e Signal models are built from ttH MC simulation
o Use independent MC simulation from those used for BDT-bkg training/optimization

e Background models are extracted from m. distribution in data (*)
e Perform simultaneous binned maximum likelihood fit to the m,, distributions in

the eight categories to extract (o, .* BRW) and the signal strength (p)

ttH
A

—

Signal model Background model
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