Status update on JadePix-4/MIC5

Yunpeng Lu

On behalf of the JadePix-4 design team

2021/10/27

- Motivation
- Design specs
- Hit processing flow
- Implementation
- Readout mode
- Summary

Motivation

Silicon tracking system

- Baseline design in the CDR stage
 - VTX: 3 (mechanical) layers of double-sided pixels
 - Pixel sensor identified as one of the critical R&Ds
 - High resolution, fast readout, low power

- Complementary design for the layer 1
 - Inner side: high resolution and low power
 - Outside: Fast readout and low power

Baseline design parameters

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
Layer 1	16	62.5	2.8	0.15%/X ₀
	18	62.5	6	$0.15\%/X_{0}$
Layer 2	₅ 37	125.0	4	$0.15\%/X_0$
	39	125.0	4	$0.15\%/X_0$
Layer 3	58	125.0	4	$0.15\%/X_0$
	60	125.0	4	$0.15\%/X_0$

Design specs

- JadePix-4 optimized for fast readout and low power
 - With pixel size $\sim 20 \ \mu m \times 30 \ \mu m$,
 - Mask area: 14.8 mm × 8.6 mm

	S.P. resolution	Integration time	Average power
JadePix-4	<5 μm	~1 µs	< 100 mW/cm ²
JadePix-3	<3 μm	<100 µs	< 100 mW/cm ²

Hit processing flow

- Hit registered in the each pixel needs fast processing
 - Hit position (col. and row address) to be encoded
 - Time stamp to be attached
 - Register to be reset for the next hit
- A major modification on the hit processing flow
 - Row address encoding embedded into the active pixel matrix, which is much faster

Implementation

- Tower Semiconductor (Tower Jazz) 180nm CIS process
- Key component verified and reused from JadePix-3
 - Diode
 - Analog frontend
 - Hit register
- Asynchronized Encoder and Reset Decoder (AERD)
 - Analog design flow for the row encoding (Human intuitive)
 - Digital design flow for the col. encoding (Algorithm driven)
- Final layout of pixel matrix
 - pixel array: 356 row × 498 col.
 - Pixel size: 20 μm × 29 μm

JadePix-4 pixel layout (MET4 and above not shown)

- 1. Diode
- 2. Analog frontend
- 3. Digital logic
- 4. AERD shared by 2 col.

Readout modes

Triggerless mode

- Global gate signal, strobe==1
- All hits registered at their leading edge
- 0.2 hits/µs per double col. with the Estimated hit density of inner most layer
- Occupancy 0.02% @ integration time = 1 μs

Trigger mode

- Global gate controlled by trigger signal
- Hits registered only when overlapped with a trigger
- Capable to handle very high hit density with a dead time for readout, 50 ns/hit

Summary

- JadePix-4/MIC5 is a complementary design to the JadePix-3
 - To complete the R&D for the double-sided concept

	JadePix-3	JadePix-4/MIC5
Pixel size	16 μm × 23.1 μm	20 μm × 29 μm
Integration time	98.3 µs	~ 1 µs
Average power	< 100 mW/cm ²	< 100 mW/cm ²
Pixel array	512 row × 192 col.	356 row × 498 col.
Mask area	10.4 mm × 6.1 mm	14.8 mm × 8.6 mm

Submitted to a shared engineering run last week.

Design team

- IHEP: Yang Zhou, Ying Zhang, Yunpeng Lu, Qun Ouyang (Project leader)
- CCNU: Ping Yang, Le Xiao, Chaosong Gao, Di Guo, Xiangming Sun
- Dalian Minzu University: Zhan Shi

Thanks for your time!