

Highlights of the 2021 Workshop on CEPC Detector & MDI Mechanical Design

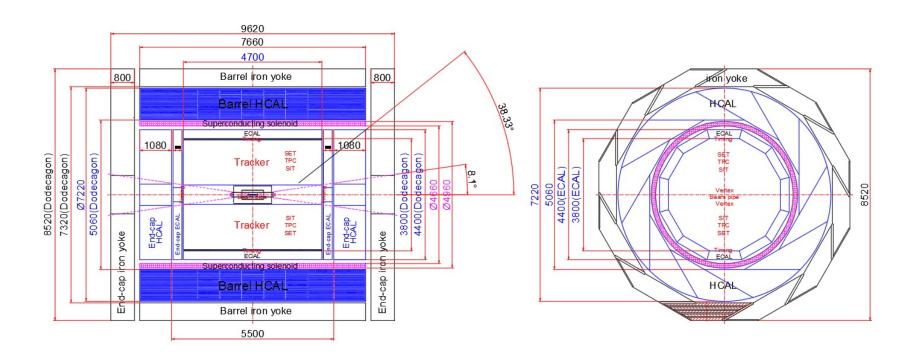
Quan JI, Haoyu SHI
CEPC Physics and Detector Plenary Meeting
2021.10.27

Talks

- 2 days, 23 talks in total. Covers all sub-detectors, MDI related issues, Mechanical designs and other topics.
- https://indico.ihep.ac.cn/event/14392/

Day 1(10.22)	
Session 1	Gang CHEN
Openning Remark	Xinchou LOU
CEPC Physics and Detector	Haijun YANG
CEPC Accelerator	Yuhui LI
Group Photo+Coffee Break	
Session 2	Jianchun WANG
Muon Detector	Xiaolong WANG
Calorimeter	Yong LIU
Drift Chamber	Mingyi DONG
Lunch Break	
Session 3	Jianchun WANG
Time Projection Chamber	Huirong QI
Silicon Tracker	Yiming LI
Vertex Detector	Zhijun LIANG
Tea Break	
Session 4	Hongbo ZHU
LumiCal	Suen HOU
CEPC MDI	Haoyu SHI
Discussion	

Day 2(10.23)			
Session 1	Yuhui LI		
MDI Mechanical Design	Haijing WANG		
MDI SC Magnet	Yingshun ZHU		
Croystat	Miaofu XU		
HOM	Yudong LIU		
Coffee Break			
Session 2	Zheng WANG		
Preliminary design of CEPC detector installation scheme	Songwen XIAO		
Heat transfer analysis of CEPC beampipe	Youlian LU		
Mechanical design of VTX prototype	Jinyu FU		
Lunch Break			
Session 3	Zhijia SUN		
Light materials in beam pipe	Shaohong WEI		
Be Corrosion and application in CSNS	Ning HE		
Yoke & SC Mechanical Design	Junsong ZHANG		
Tea Break			
Session 4	Haijun YANG		
Summary+Discussion	Quan JI		
Closing Remark	Jie GAO		



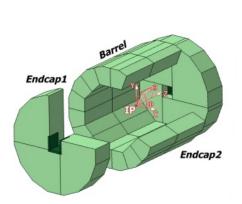
Outline

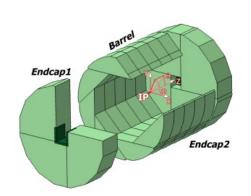
- Detector:
 - Mechanical Design of sub-detectors
 - Integration & Installation Scheme of the Detectors

- MDI:
 - Physical Design of the baseline
 - Some Mechanical Design

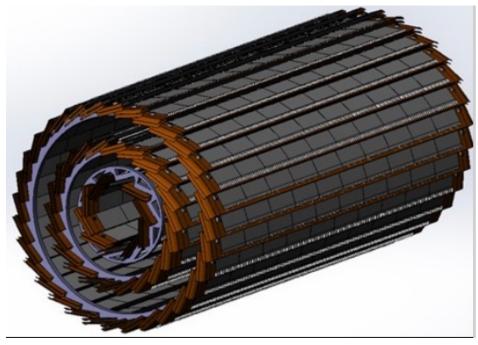
Detector

- Mechanical Design of sub-detectors
- Integration & Installation Scheme of the Detectors


Sub-detectors

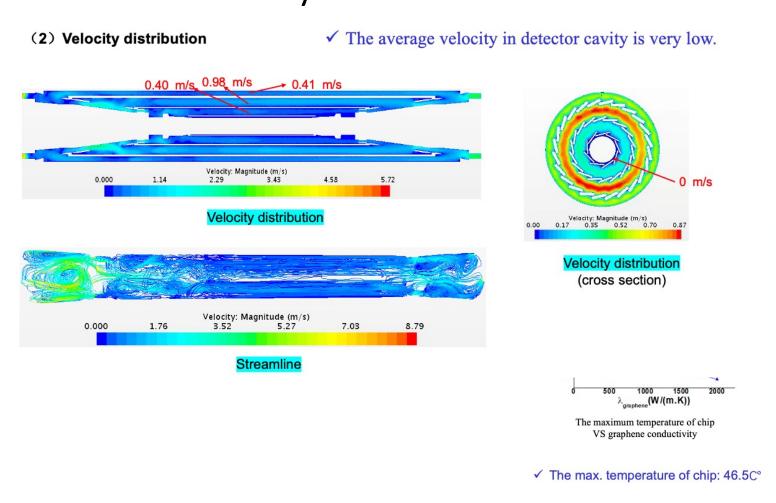

- All the sub-detectors presented the physical design
- Some of them presented the preliminary mechanical design

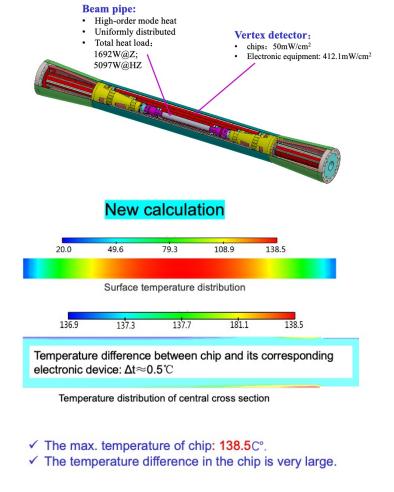
Yong LIU


Zhijun LIANG Jinyu FU

Layout 1: symmetric barrel

Layout 2: asymmetric barrel




Integration

 The integration of vertex detector and the beampipe may need further study.

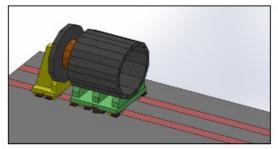
Youlian LU

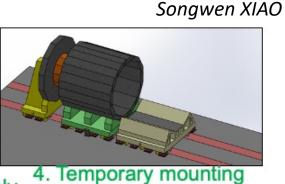
Integration & Installation

• The parameters of the detector from mechanical side.

Songwen XIAO

SN	Name	Total weight (ton)	Number	Weight of each (ton)	Boundary Dimension	mounting clearance
1	Barrel iron yoke	1200	12	100	Ф8520, L:7660mm	/
2	HACL	1200	12	100	Ф7220, L:7660mm	50mm
3	Superconducting solenoid	30	1	30	Ф4960, L:7660mm	50mm
3	ECAL	120	12	10	Ф4400, L:4700mm	50mm
4	SET+TPC+SIT	?	Entirety	?	Ф3800, L:4700mm	/
5	End-cap iron yoke	500	5	100	Ф8520, L:800mm	180mm
6	End-cap ECAL	100	1	100	Ф7220, L:1080mm	50mm





4.3 Installation process

1. End yoke assembly

2. Yoke iron base assembly

3. Polygonal ion yoke assembly

base assembly

5. HCAL is hoisted in

7. Superconducting

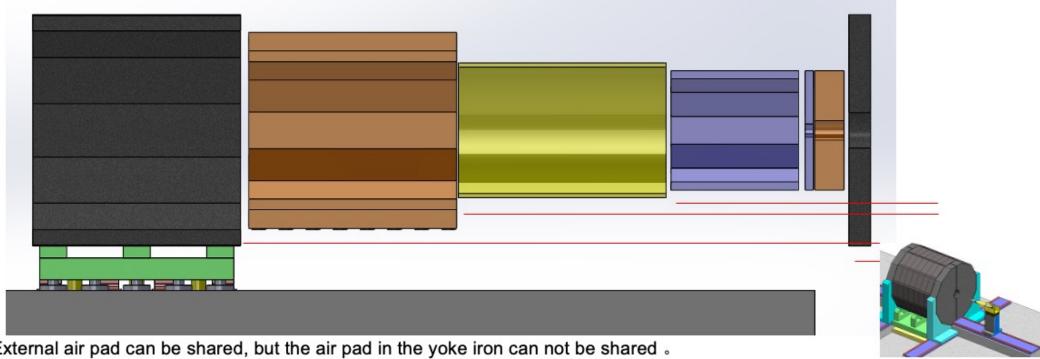
8. Superconducting magnet

is pushed in

9.ECAL is pushed in

10. Removal of temporary base

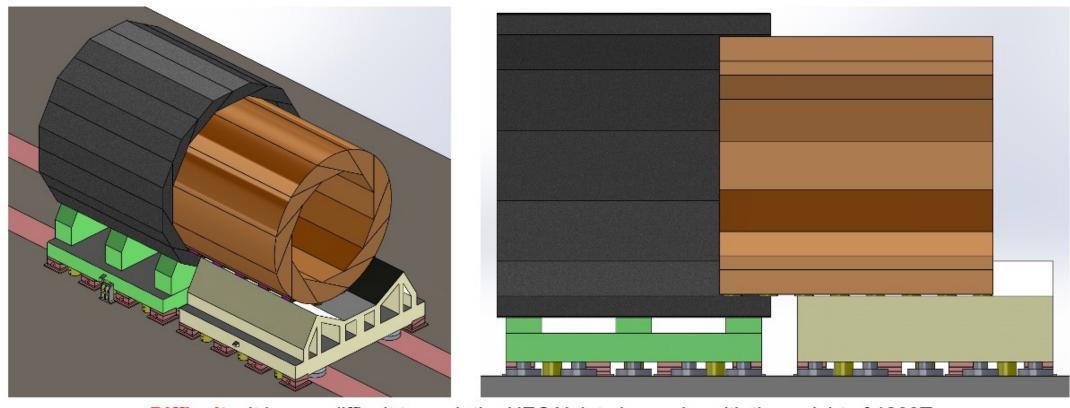
11. End yoke is push in


12.MDI docking

4.4 Technical difficulties of sharing guide rail

Songwen XIAO

- 1. External air pad can be shared, but the air pad in the yoke iron can not be shared .
- 2. Each part must be pushed in, and the bottom height of each part is inconsistent, which make temporary tooling must be used.
- 3. The end yoke height is the lowest and the temporary mounting base must be lifted to push the end yoke next to the barrel yoke.
- 4. It is very difficult to push the ECAL into iron yoke with the weight of 1200Ton .

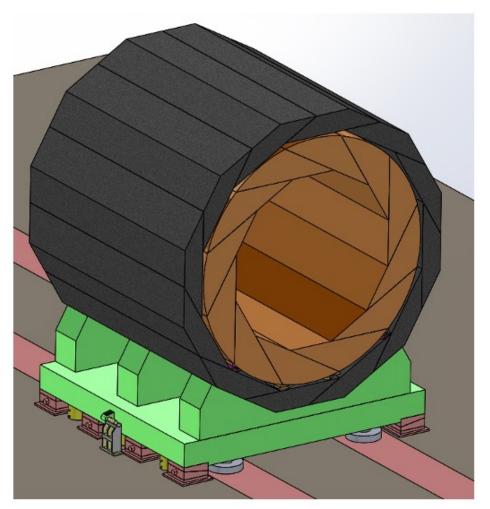

Another idea: the end yoke is flat open. the difficulty is that the end yoke thickness is only 800mm

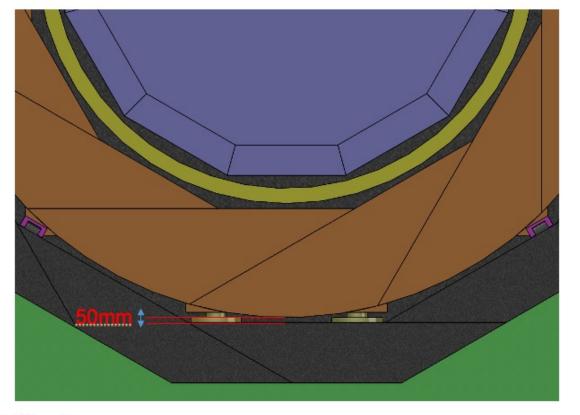
4.4 Technical difficulties of sharing guide rail

Songwen XIAO

Difficult: It is very difficult to push the HECAL into iron yoke with the weight of 1200Ton

Another idea: Open cover construction with iron yoke and HCAL.


Another idea: Iron yoke and HCAL form a whole and are divided into several parts.



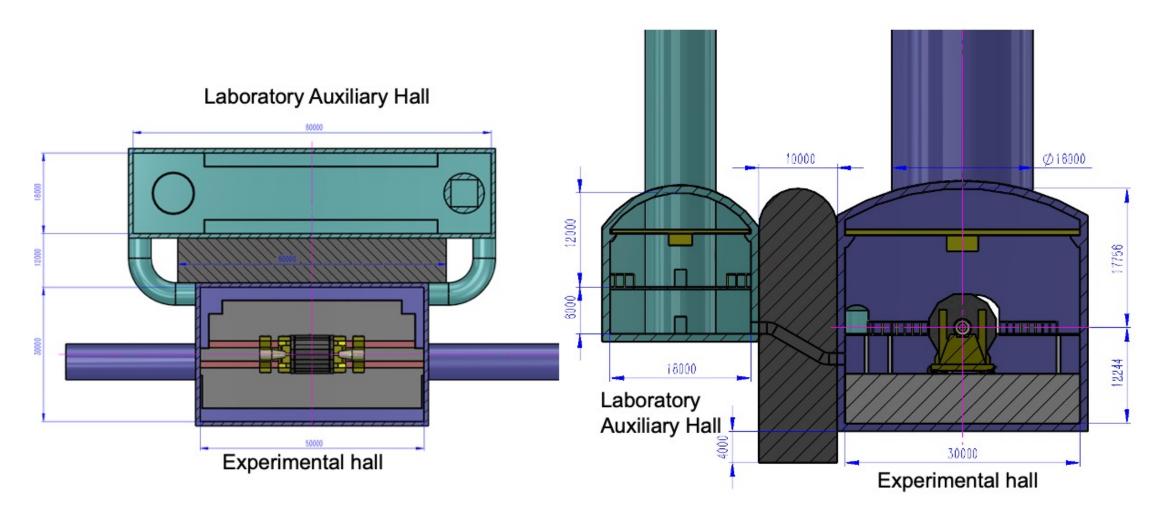
4.4 Technical difficulties of sharing guide rail

Songwen XIAO

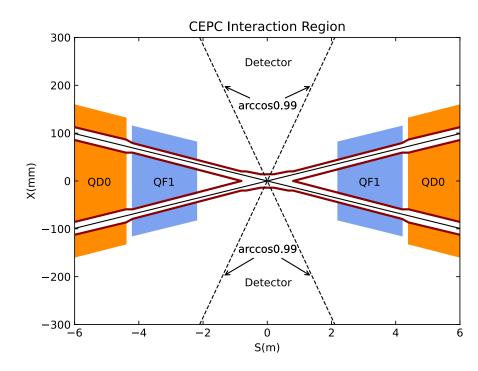
Difficult: There is not enough space for support and adjustment mechanism within 50mm clearance.

Another idea: CMS experience

Experiment Hall


Songwen XIAO 6m travel allowance 9m Freight elevator shaft 16m shaft well Laboratory Auxiliary Hall* Accelerator tunnel Radiation retaining wall Experimental hall

Experiment Hall

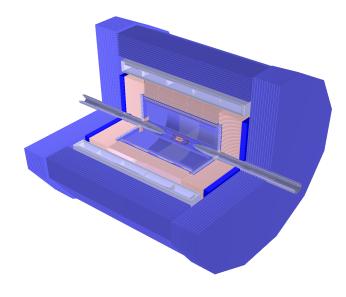


Songwen XIAO

MDI

- Physical Design of the baseline
- Some Mechanical Design

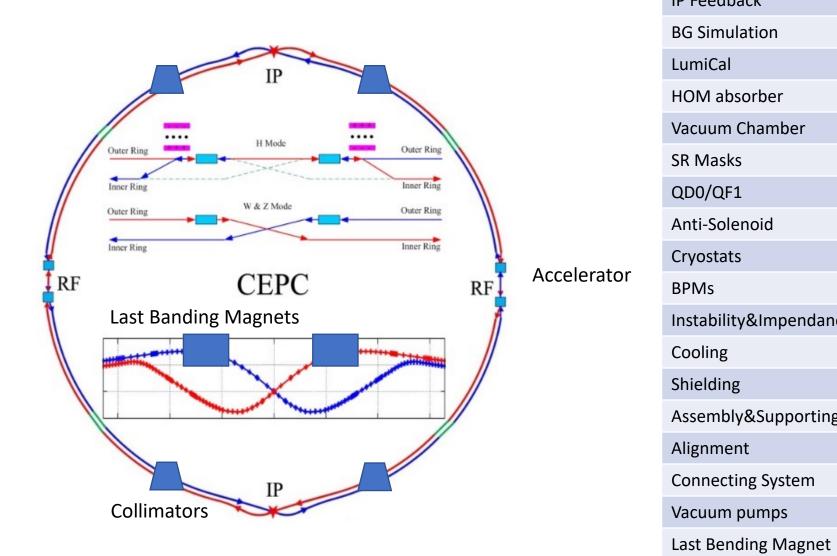
The inputs of baseline design



- Dedicated to CDR parameters of the accelerator, and the baseline design of the detector.
 - 28mm Be beam pipe

CDR Parameters(2T for Z)

	Higgs	W	Z (2T)		
Number of IPs		2			
Beam energy (GeV)	120	80	45.5		
Circumference (km)		100			
Synchrotron radiation loss/turn (GeV)	1.73	0.34	0.036		
Half Crossing angle at IP (mrad)		16.5	•		
Piwinski angle	2.58	7.0	23.8		
Number of particles/bunch N_e (1010)	15.0	12.0	8.0		
Bunch number (bunch spacing)	242 (0.68μs)	1524 (0.21µs)	12000 (25ns+10%gap)		
Beam current (mA)	17.4	87.9	461.0		
SR power /beam (MW)	30	30	16.5		
Bending radius (km)	10.7				
Momentum compact (10 ⁻⁵)		1.11	95		
β function at IP $\beta_{c}^{*}*/\beta_{f}^{*}*(m)$	0.36/0.0015	0.36/0.0015	0.2/0.001		
Emittance ε _r /ε _r (nm)	1.21/0.0031	0.54/0.0016	0.18/0.0016		
Beam size at IP $\sigma_r/\sigma_r(\mu m)$	20.9/0.068	13.9/0.049	6.0/0.04		
Beam-beam parameters ξ_i/ξ_j	0.031/0.109	0.013/0.106	0.0041/0.072		
RF voltage V_{RF} (GV)	2.17	0.47	0.10		
RF frequency f RF (MHz) (harmonic)		650 (216816)			
Natural bunch length σ_z (mm)	2.72	2.98	2.42		
Bunch length $\sigma_{\!\scriptscriptstyle E}$ (mm)	3.26	5.9	8.5		
Natural energy spread (%)	0.1	0.066	0.038		
Energy acceptance requirement (%)	1.35	0.4	0.23		
Energy acceptance by RF (%)	2.06	1.47	1.7		
Lifetime (hour)	0.67	1.4	2.1		
Luminosity/IP L (1034cm-2s-1)	2.93	10.1	32.1		


Baseline Detector

Map of the MDI Study

•	
IP Feedback	
BG Simulation	Centra
LumiCal	Vertex
HOM absorber	LumiCa
Vacuum Chamber	Silicon
SR Masks	TPC
QD0/QF1	Hcal
Anti-Solenoid	Ecal
Cryostats	Soleno
BPMs	Yoke
Instability&Impendance	Muon
Cooling	Hall
Shielding	BG Sim
Assembly&Supporting	Softwa
Alignment	Alignm
Connecting System	Electro
Vacuum pumps	Cryoge

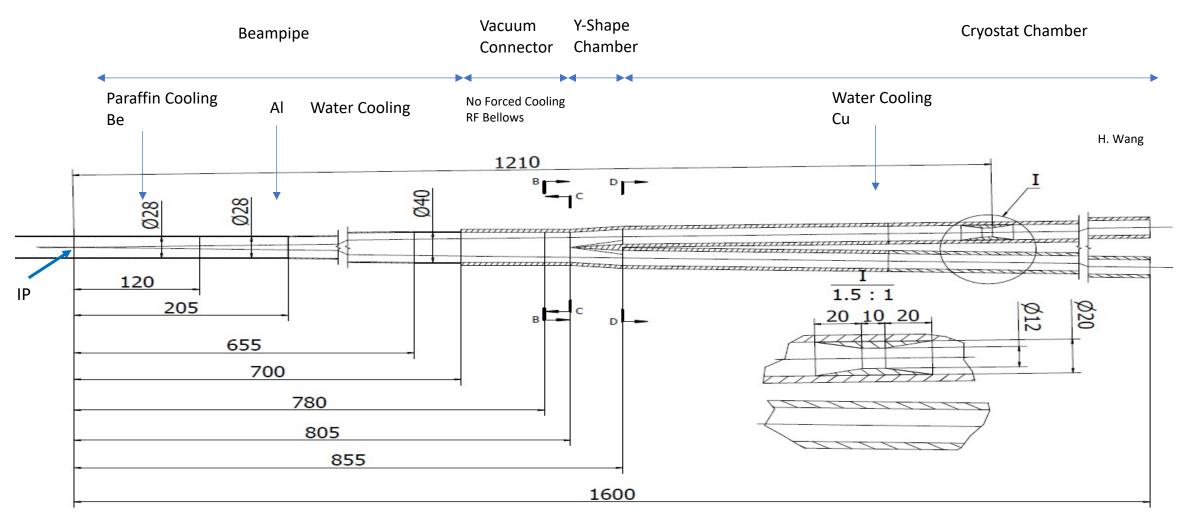
Collimators

Control

Central Beam Pipe
Vertex Detector
LumiCal
Silicon Tracker
TPC
Hcal
Ecal
Solenoid
Yoke
Muon Detector
Hall
BG Simulation&Shielding
Software Geometry
Alignment&Assembly
Electronics
Cryogenic
Radiation Protection
Booster

Detector

The MDI Table

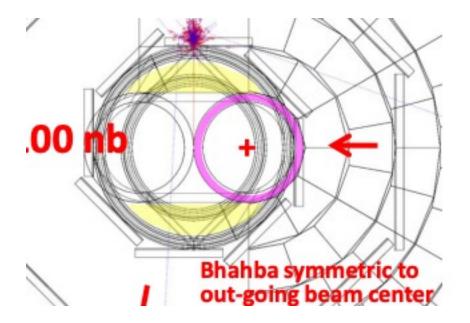

	Range	Peak field in Coil	Central Field Gradien t	Bending angle	Length	Beam Stay Clear Region	Minimal distance between two aperture	Inner diameter	Outer diameter	Critical Energy(H orizontal)	Critical Energy(Vertical)	SR power(Ho rizontal)	SR Power(Vertical)
L*	0~2.2m				2.2m								
Crossing angle	33mard												
MDI Length	<u>±</u> 6m												
Opening angle	13.6												
QD0		3.2T	136T/m		2m	19.51mm	72.61mm	40mm	53mm	1.3MeV	527keV	639W	292W
QF1		3.8T	110T/m		1.48m	26.85mm	146.2mm	56mm	68mm	1.6MeV	299keV	1568W	74W
Lumical	0.805 ~ 0.855m												
Anti-solenoid before QD0		7.26T			1.1m			120mm	390mm				
Anti-solenoid QD0		2.8T			2m			120mm	390mm				
Anti-solenoid QF1		1.8T			1.48m			120mm	390mm				
Beryllium pipe					<u>±</u> 12cm			28mm					
Last BM upstream	67.66~161.04m			1.1mrad	93.38m					45keV			
First BM downstream	46.06~107.04m			1.54mrad	60.98m					97keV			
Beampipe within QD0					2m			20mm					
Beampipe within QF1					1.48m								
Beampipe between QD0/QF1					0.23m								

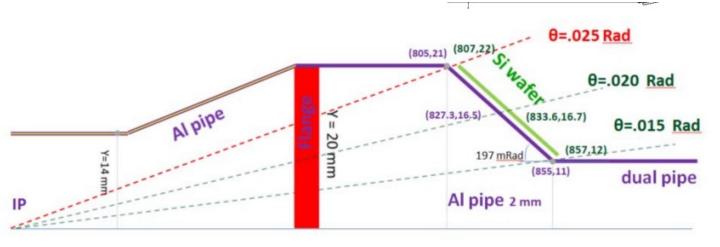
The latest beampipe design

Nearly 20 versions tried in since last summer

LumiCal

Suen HOU


40 -> 20 on Y axis

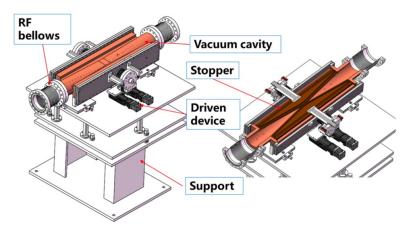

• LumiCal is necessary to achieve precision luminosity measurement as

required for precision Higgs/EW measurement

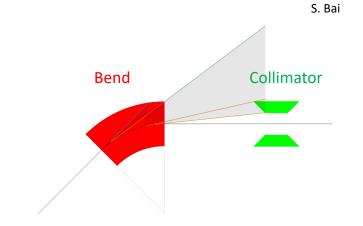
• The new position of LumiCal has been chosen.

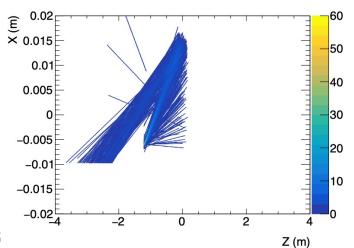
Detector design and integration into IR

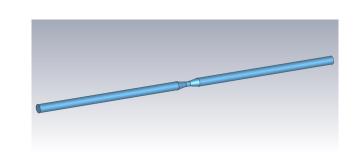
Collimators & Masks



- Collimators & Masks are indispensable for BG suppressing.
- Collimators may also design for Machine Protection.
- 4 sets of horizontal collimators per ring till now(No MPC).
 - Upstream beam loss have been reduced to low level.
 - Preliminary design of the movable collimator has been done.
- 4 SR Masks per ring till now.
 - -4.2m/-1.21 per IP.

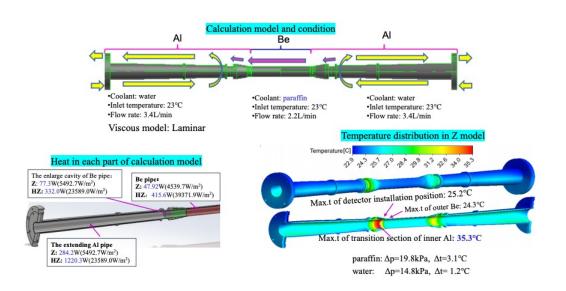

S. Bai


Name	Location	From IP
APTX1	D1I.1897	2139.06
APTX2	D1I.1894	2207.63
АРТХЗ	D10.10	1832.52
АРТХ4	D10.14	1901.09



Safety Check?

- Thermal Analysis(including impendence)
 - Source
 - HOM Heating
 - Synchrotron Radiation
 - Other Backgrounds(Negligible)
- Backgrounds Estimation
 - Hotspot Shielding
 - Full Detector Simulation

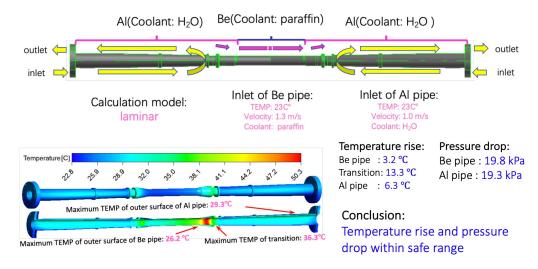


Loss factor(V/pc)	Power @Higgs		
8.69*10-4	0.36 w	1.47 w	5.13w

Thermal Analysis

CDR Z parameters

• Pressure drop:

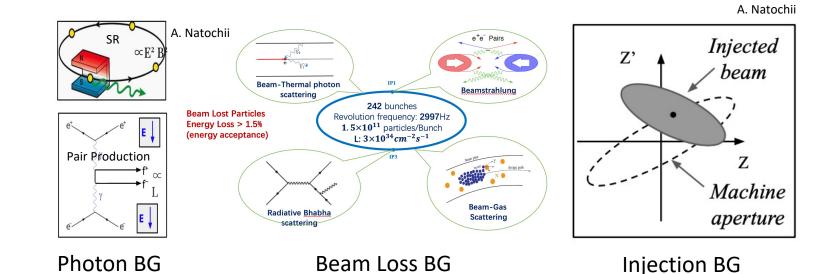

Be pipe : 19.8 kPaAl pipe : 19.3 kPa

• TEMP rise:

Be pipe : 3.2 °C (between the inlet and the outlet)

Transition: 13.3 °CAl pipe : 6.3 °C

Temperature rise and pressure drop are in a safe range

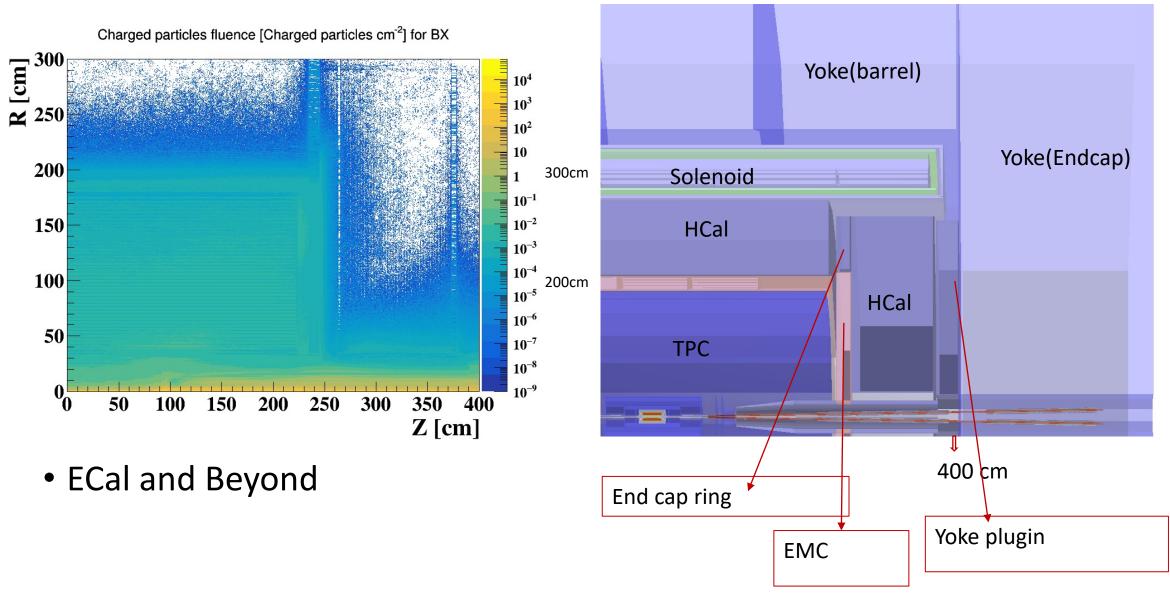


Background Estimation

- Whole-Ring generation for some BGs
- Multi-turn tracking
 - Using built-in LOSSMAP with one step ahead
 - SR emitting on
 - RF on
- Doing
 - 2 IR per ring
 - Magnet errors
 - No misalignment
 - High-order magnets
 - Integrating to CEPCSW

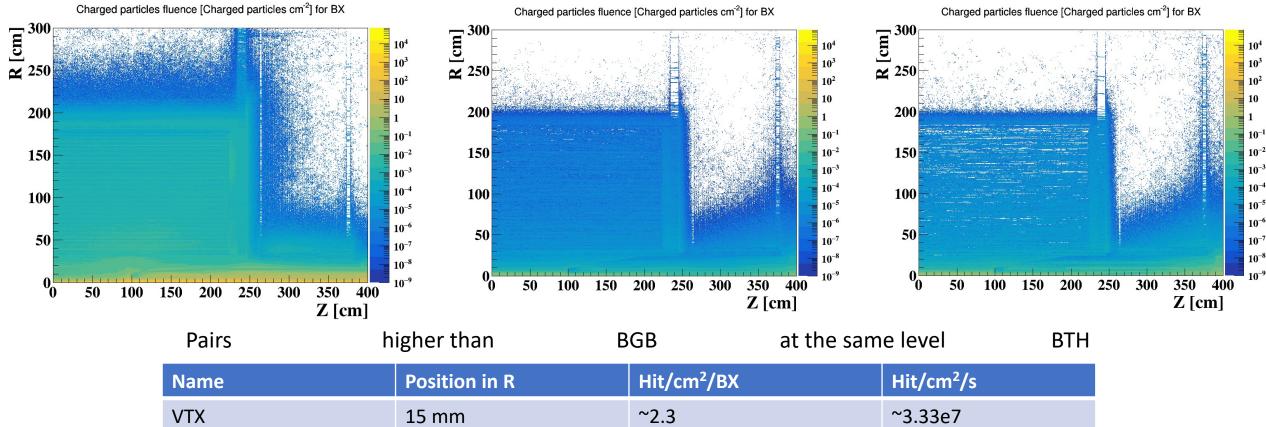
Background	Generation	Tracking	Detector Simu.	
Synchrotron Radiation	BDSim	BDSim/Geant4		
Beamstrahlung/Pair Production	Guinea-Pig++			
Beam-Thermal Photon	РуВТН		Mokka	
Beam-Gas Bremsstrahlung	PyBGB	SAD	IVIOKKA	
Beam-Gas Coulomb	BGC in SAD			
Radiative Bhabha	Bbbrem			

Detector Impact


• Preliminary results on 1st layer of vertex. Safety factor of 10 applied.

Background	Hit D	ensity($cm^{-2}\cdot B$	$3X^{-1}$)	$TID(Mrad\cdot yr^{-1})$			1 MeV equivalent neutron fluence $(n_{eq}{ imes}10^{12}\cdot cm^{-2}\cdot yr^{-1})$		
	Higgs	W	Z	Higgs	W	Z	Higgs	W	Z
Pair production	1.8	1.2	0.4	0.50	2.1	5.6	1.0	3.8	10.6
Beam Gas	0.4	0.4	0.2	0.36	1.3	4.1	1.0	3.6	11.1
Beam Thermal Photon	0.1	0.1	0.03	0.07	0.3	0.8	0.2	0.7	1.9
Total	2.3	1.7	0.63	0.93	3.7	10.5	2.2	8.1	23.6
Total_oCDR	2.4	2.3	0.25	0.93	2.9	3.4	2.1	5.5	6.2

Full Detector Simulation(Higgs)



Full Detector Simulation(Higgs)

Name	Position in R	Hit/cm ² /BX	Hit/cm ² /s
VTX	15 mm	~2.3	~3.33e7
SIT	15 cm	~0.01	~14507
TPC	50 cm	~0.005	~7253
Ecal	200 cm	~1e-4	~145
Hcal	220 cm	~2e-6	~2.9

Mechanical Design

	Stress analysis of the latest beam tube structure					
Case	constraint	Deformation/mm	Stress/MPa			
1	Ignore detector load; Fixed at one end	0.14	3			
2	Add detector load; Fixed at one end	0.5	10.8			
3	Add detector load; One end is fixed; The other end is radial constrained	0.002	0.3			
4	Add detector load; One end is fixed; The other end is radial constrained and axial pressured 0.2MPa	0.015	13.9			

✓ With carbon fiber tube, the overall structure is stable and safe.

Inner Be pipe: Critical pressure calculation

$$Pcr = \frac{E}{4(1-\mu^2)} \left(\frac{t}{R}\right)^3$$

$$E - modulus of elasticity t - thickness \mu - Poisson's ratio R - (R1+R2)/2$$

·		-	0 .	0.1.1.1
Inner diameter of	thicknes	Inner	Outer	Critical
vacuum tube	s	radius	radius	pressure
mm	mm	mm	mm	MPa
	0.5	14.0	14.5	3.3
28	0.35	14.0	14.35	1.15
	0.3	14.0	14.3	0.73
20	0.25	10.0	10.25	1.15

Inner Be pipe:

✓ Ф28mm: 0.5mm ⇒ 0.35mm

✓ Ф20mm: 0.25mm

Outer Be pipe: the maximum allowable working pressure

$$[P_W] = \frac{2\delta_e [\sigma]^t \phi}{(D_i + \delta_e)}$$

$$\delta_e - \text{Tube thickness, mm}$$

$$[\sigma]^t - \text{Allowable stress, MPa}$$

$$\Phi - \text{Weld coefficient}$$

$$D_i - \text{Inner diameter, mm}$$


Inne	Inner Be water Outer Be		allowable	weld	Maximum allowable		
Diameter	thickness	thickness	Diameter	thickness		coefficient	
			Di	δε	[σ]^t	Φ	Pw
mm	mm	mm	mm	mm	Mpa		MPa
28	0.35	0.5	29.7	0.25	71.25	1	1.2
20	0.55	0.5	29.1	0.2	71.25	1	1.0
20	0.2	0.5	21.4	0.15	71.25	1	1.0

Outer Be pipe:

✓ Φ28mm: 0.35mm ⇒ 0.25mm

✓ Ф20mm: 0.15mm

Youlian LU

Streamline comparison chart

New Light Material Candidate

Magnesium lithium alloy is the lightest metal structural material in the world;

Shaohong WEI

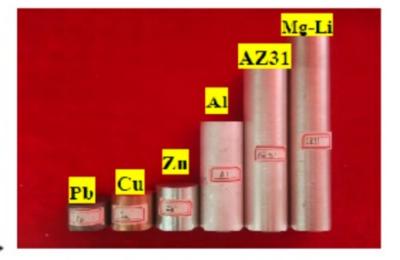
➤ Density is 1.35-1.65g/cm3, which is 1 / 4-1 / 3 lighter than ordinary magnesium alloy and 1 / 3-1 / 2 lighter than aluminum alloy;

Mg-Li合金 Li -

Li --- Lightest metal;

Mg--- Lightest structural material

Characteristic


- supper light;
- High strength;

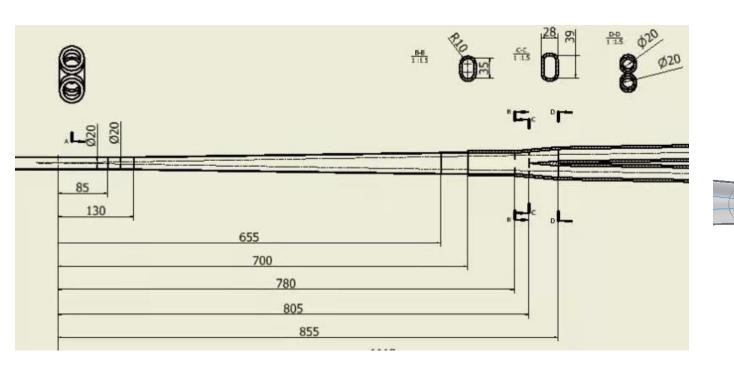
Application area:

- Aerospace
- Military project
- Civil 3C

相同重量的不同合金对比

Manufacturer:

- ✓ 中铝郑州轻金属研究院;
- ✓ 东北轻合金有限公司;



Novel Design - Shrinking to 20mm

CEPC Physics and Detector Plenary Meeting, Oct 27th, 2021, H.SHI

- Smaller Be inner diameter would benefit vertex
- Preliminary Design has been performed

X direction: 20-35-(2-20)mm; Y direction: 20-20-20mm;

What MDI Study covers now

	IP Feedback	Not Covered	Red means a part of "specific" MDI, Blue means its parameter is					
	BG Simulation	Doing		relative to MDI, while Black means it would affect by MDI				
	LumiCal	Doing		Central Beam Pipe	Done			
	HOM absorber	No Need		Vertex Detector	Doing			
	Vacuum Chamber	Done		LumiCal	Doing			
	SR Masks	Done		Silicon Tracker	Doing			
	QD0/QF1	Doing		TPC	Doing			
	Anti-Solenoid	Doing		Hcal	Doing			
	Cryostats	Doing		Ecal	Doing			
	BPMs	Doing		Solenoid	Doing, strength Fixed	Detector		
	Instability&Impendance	Done		Yoke	Doing			
	Cooling	Done		Muon Detector	Doing			
	Shielding	Doing		Hall	?			
	Assembly&Supporting	Doing		BG Simulation&Shielding	Doing			
	Alignment	Doing		Software Geometry	Done, check needed			
	Connecting System	Doing		Alignment&Assembly	Doing			
	Vacuum pumps	Doing		Electronics	?			
	Last Bending Magnet	Done		Cryogenic	?			
7	Collimators	Doing	ar Dlam	Radiation Protection	Not Covered	20		
/	Control	Not Covered	or Plen	Booster	Not Covered	30		

2021/10/27

Accelerator

What's next?

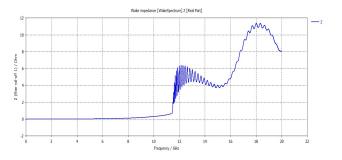
- For detector mechanics, optimize the integration&installation scheme.
 - Continue the mechanical design of the yoke, SC and other sub-detectors.
 - The installation scheme of beampipe at commissioning phase.
 - The integration and installation of the whole detector as well as beampipe.
 - Optimize the design of experiment hall, auxiliary hall and other halls on ground.
- For MDI, continue finishing current design, start the design for TDR.
 - More detailed & feasible mechanical design
 - More detailed simulation and understanding of the results
 - More realistic model in simulation(fewer lacking sources, better geometry, etc.)
 - More efficient simulation

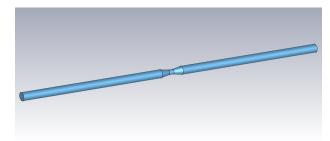
What's next?

- At the same time, as Prof. GAO suggested,
 - Clear CEPC MDI specified subsystem target goal parameter tables should be established to guide the evaluation of the status of each subsystem and MDI as a whole one.
 - Clear CEPC MDI subsystem overlapping working relation and communication table(s) should be established to improve the communication among colleagues in MDI as a whole team.
 - Clear a version name equipped with a complete documents of current and future study of MDI in order to avoid any confusion in a complex system such as MDI(Summarize the current version when it roughly finished before we touch the new).

Thank You

Backup

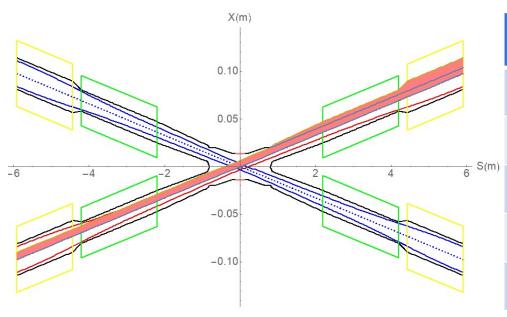



HOM & Impendence

- The Power Distribution on Higgs & Z mode has been simulated.
 - The new SR masks has been considered.

距IP 距离(m m)	形状	内径(mm)	材料	内表面积 (mm²)	备注	总功率& Higgs (W)	功率密度& Higgs (W/cm ²)	功率分布& Higgs (W)	总功率& Z (W)	功率密度& Z (W/cm ²)	功率分布& Z (W)
0 - 120	圆直管	直径28	Ве	10556		6.6	0.06	6, 60	47.92	0.45	47.92
120-205	圆直管	直径28	Al	7477	-			2. 71			39. 44
205-655	圆锥管	直径28过 渡到直径 40		48071	taper:1.7 5	22.2	0.04	17. 44	322.8	0. 53	253. 54
655-700	圆直管	直径40	Al	5655	S			2.05			29.83
700-780	國直管	直径40	Cu	10052	远程连接 装置预留			2. 60			39. 05
780-805	圆面过 渡到跑 道型	水平方向 直径40- 40,垂直 方向直径 40-30.7	Cu	3124		13.2	0.03	0. 81	198.2	0.39	12. 14
805-855	跑道型 过渡到 两个圆 面	上游直径 12 下游直径 20	Cu	6932				1. 79			26. 93
855-1110	上游園 锥管 下游園 直管	上游直径 12过渡到 20,下游 直径20	Cu	30906				8. 00			120. 08

Loss	Power	Power	Power
factor(V/pc)	@Higgs	@W	@Z
8.69*10 ⁻⁴	0.36 w	1.47 w	

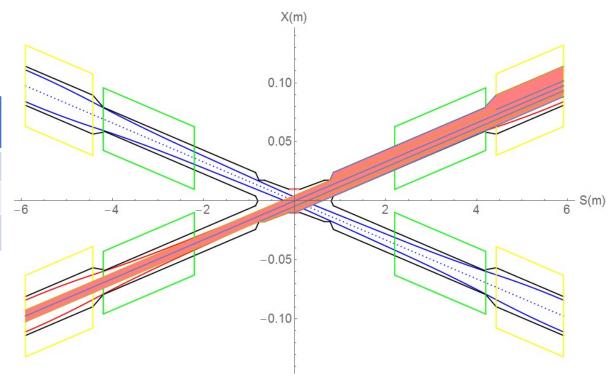

Synchrotron Radiation

 Synchrotron radiation should be dealt with high priority at circular machines when designing the interaction region

Revised beam pipe design to achieve

No direct SR photons hitting the central beam pipe except the extreme beam conditions (e.g. beam off orbit due to magnet errors)

	Power Deposition	Average Power Density
0.805~0.855m	16W	88.9W/cm ²
0.855~2.2m	12.3W	2.54W/cm ²
QD0(2.2m~4.2m)	2.79W	0.39W/cm ²
QD0~QF1(4.2~4.43m)	36.1W	43.6W/cm ²
QF1(4.43m~5.91m)	3W	0.56W/cm ²



Novel Design - Shrinking to 20mm

- SR would hit Be beam pipe directly in error case
 - SR hitting Be pipe directly in (- $85mm \sim 11.4mm$) range, but since instantaneously, heat load is not a problem.
 - SR photons hitting the bellows under the extreme beam conditions, temperature rise ~10C

Region	Material	SR heat load	SR average power density
-85mm ~ 11.4mm	Ве	13.74W	41W/cm ²
-130mm ~ -85mm	Al	6.66W	41.1W/cm ²
-780mm ~ -655m	Al	18.3W	40.7W/cm ²

Novel Design - Shrinking to 20mm

- SR would hit Be beam pipe directly in error case
 - SR hitting Be pipe directly in (- $85mm \sim 11.4mm$) range, but since instantaneously, heat load is not a problem.
 - SR photons hitting the bellows under the extreme beam conditions, temperature rise ~10C
 - Several assumptions were taken here:
 - Extreme condition, eg, if a magnet power is lost, a large distortion will appear immediately for the whole ring orbit. The beam will be lost when exceeded.
 - In extreme cases ~ at least 10 times per day. The beam will be stopped within 0.5ms when abnormal.
 - The background of the detector should not be considered under abnormal conditions.
 - The beam orbit deviation will not affect detector operation, since the high background part will be removed when data analysis is carried out.

These assumptions may need further discussion

MDIAccelerator	Person
IP Feedback	J.H. Yue/C.H. Yu/Y.W. Wang
BG Simulation	H.Y. Shi/S. Bai
LumiCal	Suen Hou/Ivanka/Phillipe
HOM absorber	Y.D. Liu/J.Y. Zhai
Vacuum Chamber	H.J. Wang
SR Masks	H.Y. Shi
QD0/QF1	Y.S. Zhu
Anti-Solenoid	Y.S. Zhu
Cryostats	M.F. Xu/T.X. Zhao
BPMs	Y.F. Sui
Instability&Impendance	Y.D. Liu/N. Wang
Cooling	Q. Ji/H.J. Wang
Shielding	H.Y. Shi/Z.J. Ma/S. Bai
Assembly&Supporting	H.J. Wang/Q. Ji
Alignment	X.L. Wang/Q. Ji/H.J. Wang
Connecting System	H.J. Wang
Vacuum pumps	Y.S. Ma
Last Bending Magnet	Y.W. Wang
Collimators	S. Bai/H.J. Wang
Control	G. Li

MDIDetector	Person
Central Beam Pipe	Q. Ji
Vertex Detector	Z.J. Liang
LumiCal	Suen Hou/Ivanka/Phillipe
Silicon Tracker	H. Fox
TPC	H.R. Qi
Hcal	Y. Liu
Ecal	Y. Liu
Solenoid	F.P. Ning
Yoke	F.P. Ning
Muon Detector	X.L. Wang
Hall	Z.A. Zhu
BG Simulation&Shielding	H.Y. Shi
Software Geometry	C.D. Fu
Alignment&Assembly	Q. Ji/H.J. Wang/X.L. Wang
Electronics	W. Wei
Cryogenic	T.X. Zhao
Radiation Protection	Z.J. Ma
Booster	D. Wang

Н.Ѕні