Search for h_c hadronic decays and $\psi(3686) \to \Sigma^+ \overline{\Sigma}^- \omega$

Lin Zhu¹, Qingping Ji ¹ and Zhiyong Wang²

¹ Henan Normal University, Xinxiang

² Institute of High Energy Physics, Beijing

Outline

Part I

Search for h_c hadronic decays

SPART II

> Search for $\psi(3686) \rightarrow \Sigma^{+} \overline{\Sigma}^{-} \omega$

Search for h_c hadronic decays

Outline

- **≻**Motivation
- ➤ Data Sample and MC Simulation
- >Analysis

$$\checkmark h_c \rightarrow 3(\pi^+\pi^-)\pi^0$$

$$\checkmark$$
 h_c \rightarrow 2($\pi^+\pi^-$) $\pi^0\eta$

$$\checkmark h_c \rightarrow 2(\pi^+\pi^-)\eta$$

$$\checkmark$$
 $h_c \rightarrow p\bar{p}\pi^0$

$$\checkmark$$
 $h_c \rightarrow p\bar{p}$

>Summary

- Study of charmonium states is crucial for reaching a deeper understanding of the low-energy regime of QCD.
- There have been few measurements of the decays of the spin-singlet charmonium state $h_c(^1P_1)$, since its discovery in 2005.

Mode	$BR(h_c \rightarrow X)$	Reference	
γης	~50%	PRD 72. 032001, et al	
γη	(4.7±2.1)·10 ⁻⁴		
γη'	(1.5±0.4)·10 ⁻³	PRL 116. 251802 (2016)	
$\pi^+\pi^-\pi^0$	(1.6±0.4±0.2)·10 ⁻³		
$2(\pi^+\pi^-)\pi^0$	$(7.44 \pm 0.94 \pm 1.52) \cdot 10^{-3}$	PRD 99. 072008 (2019)	
$3(\pi^+\pi^-)\pi^0$	(4.7±2.2±1.1) ·10 ⁻³	1112 00. 012000 (2010)	
ρρπ+π-	(2.9±0.3±0.3) ·10 ⁻³		
pp̄	<1.5·10 ⁻⁴	PRD 88. 112001 (2013)	
$K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}$	$(3.33 \pm 0.6 \pm 0.6) \cdot 10^{-3}$		
$K_S^0K^\pm\pi^\mp\pi^+\pi^-$	$(2.8 \pm 0.9 \pm 0.6) \cdot 10^{-3}$	PRD 102. 112007 (2020)	
$\pi^+\pi^-\pi^0\eta$	$(7.2 \pm 1.8 \pm 1.4) \cdot 10^{-3}$	1102. 112001 (2020)	
$K^+K^-\eta$	$< 5.8 \cdot 10^{-4}$		
$p\overline{p}\pi^+\pi^-\pi^0$	$(3.84 \pm 0.83) \cdot 10^{-3}$	BAM-00512*	
р̄рη	$p\bar{p}\eta$ (6.41 ± 1.74) · 10 ⁻⁴		
$p \overline{p} \pi^0$	$< 6.59 \cdot 10^{-4}$		

Data samples

Data set	Number of events	BOSS version
$09+12 \psi(3686)$ data	4.48×10^{8}	6.6.4.p03
$2021 \psi(3686) \text{data}^{1,2}$	2.28×10^{9} (half)	706
$09+12 \psi(3686)$ inclusive MC	5.06×10^{8}	6.6.4.p03
PHSP MC	1×10^5 for each channel	6.6.4.p03

¹/besfs4/offline/data/706-1/psip/round14/opendst

 $^{^2}$ https://indico.ihep.ac.cn/event/13971/session/15/contribution/102/material/slides/0.pdf 6

Mode I:

$$h_c \rightarrow 3(\pi^+\pi^-)\pi^0$$

Initial Event Selection

Charged tracks

- $|R_{xy}| < 1 \, cm, |R_z| < 10 cm$
- $|\cos\theta| < 0.93$
- N = 6, $N_m = N_p = 3$

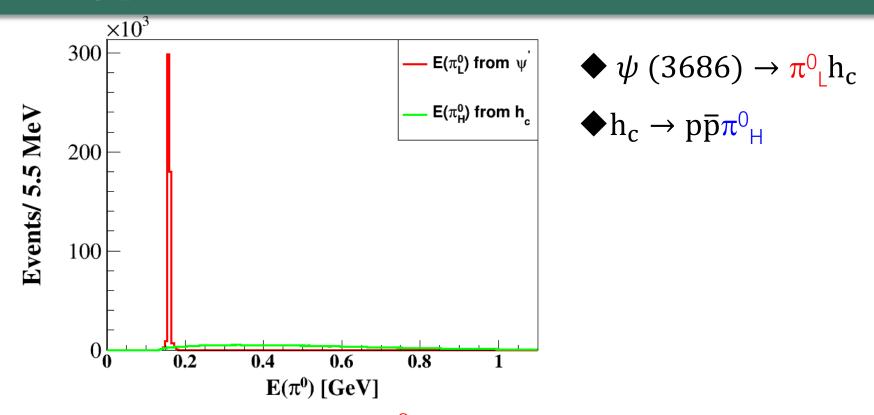
Particle identification

- Prob(pi)> Prob(p), Prob(pi)> Prob(K)
- $N_{\pi^+} = N_{\pi^-} = 3$

1C for π^0 :

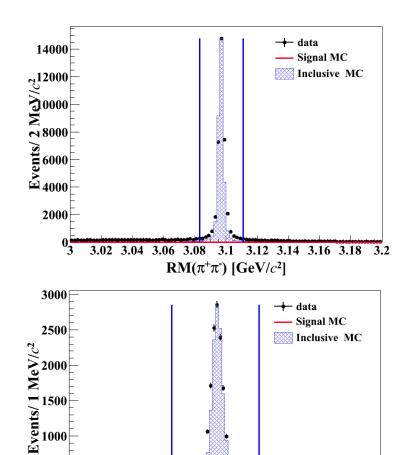
• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.

• Additional 4C kinematic fit for $3\gamma 3(\pi^+\pi^-)$, $4\gamma 3(\pi^+\pi^-)$ and $5\gamma 3(\pi^+\pi^-)$ final states.

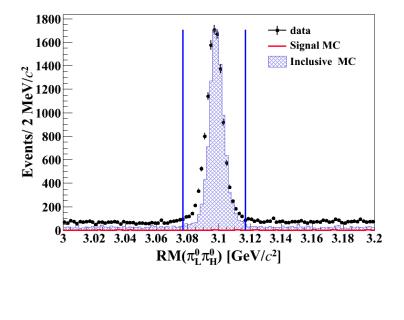

A 6C kinematic fit with

 $\psi(3686) \rightarrow 3(\pi^+\pi^-)\gamma\gamma\gamma\gamma$.

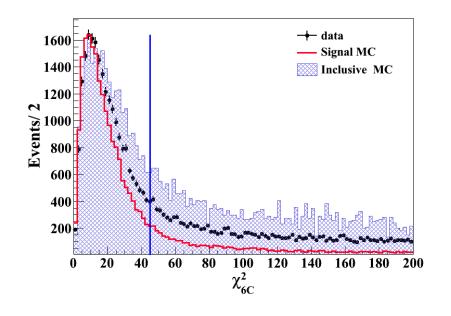
Vertex Fit for $3(\pi^+\pi^-)$

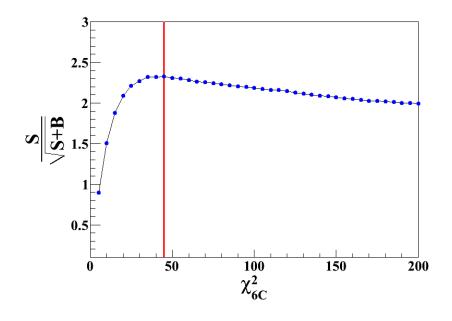

- $0 \le TDC \le 14$
- Barrel : $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$
- End cap : E > 0.050 GeV, $0.86 < |cos\theta| < 0.92$
- $N_{\gamma} \geq 4$

Energy distribution of two π°


- The energy of bachelor π^0 from $\psi(3686)$ is lower than that from $\mathbf{h_c}$.
- The lower one is tagged as π^0_L , and the higher one is tagged as π^0_H

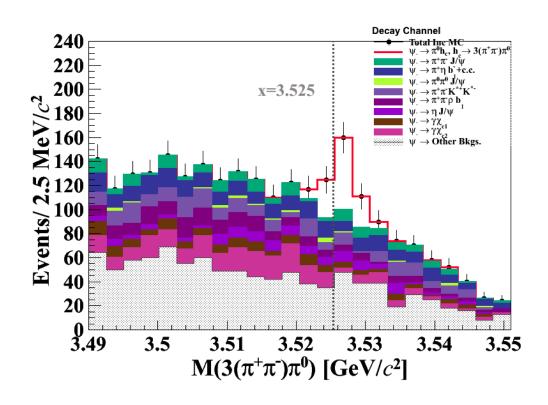
Veto on $\psi(3686) \rightarrow \pi \pi J/\psi$ or $\eta \rightarrow \pi^+\pi^-\pi_L^0$

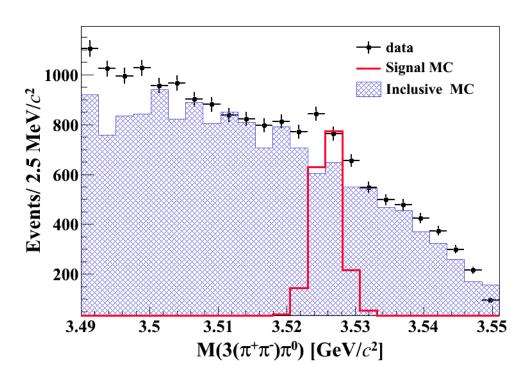

0.5 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.6 $\mathbf{M}(\pi^+\pi^-\pi_1^0)$ [GeV/ c^2]


500

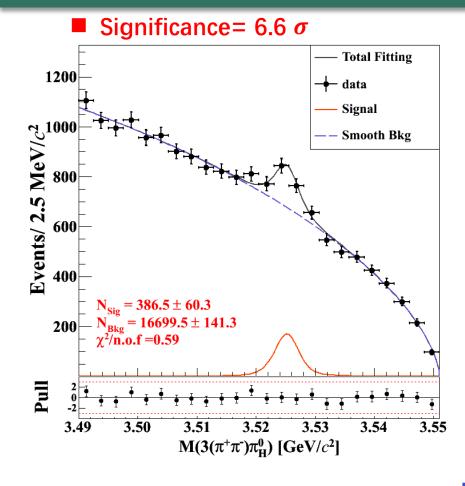
- $> |RM(\pi^+\pi^-) m(J/\psi)| > 14Me V/c^2$
- $ightharpoonup \left| RM \left(\pi_L^0 \pi_H^0 \right) m(J/\psi) \right| > 20 \text{MeV/c}^2$
- $ightarrow \left| M \left(\pi^+ \pi^- \pi_L^0 \right) m(\eta) \right| > 12 \text{Me V/c}^2$

6C kinematic fit




- $> \chi_{6C}^2 < 45$
- ➤ Additional requirement

$$\checkmark \chi^{2}_{4C}(4\gamma 3(\pi^{+}\pi^{-})) < \chi^{2}_{4C}(3\gamma 3(\pi^{+}\pi^{-}))$$


$$\checkmark \chi^{2}_{4C}(4\gamma3(\pi^{+}\pi^{-})) < \chi^{2}_{4C}(5\gamma3(\pi^{+}\pi^{-}))$$

$M(3(\pi^{+}\pi^{-})\pi^{0})$

h_c Signal fit

☐ Fitting function is described as:

P. D. F. = $N_{sig} \cdot (MCShape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Argus(r, s, p)$

$$B(h_c \to 3(\pi^+\pi^-)\pi^0) = \frac{N^{obs}}{N_{tot} \cdot B(\psi(3686) \to \pi^0 h_c) \cdot B(\pi^0 \to \gamma\gamma)^2 \cdot \varepsilon}$$

$$\checkmark Br(\psi(3686) \rightarrow \pi^0 h_c) = (8.6 \pm 1.3) \times 10^{-4}$$

$$\checkmark Br(\pi^0 \to \gamma \gamma) = (98.823 \pm 0.034)\%$$

Mode	N^{obs}	arepsilon(%)	$B(\times 10^{-3})$
$h_c \to 3(\pi^+\pi^-)\pi^0$	386.5±60.3	3.92	~

Mode II:

$$h_c \rightarrow 2(\pi^+\pi^-)\pi^0\eta$$

Initial Event Selection

Charged tracks

- $|R_{xy}| < 1 \, cm$, $|R_z| < 10 \, cm$
- $|\cos\theta| < 0.93$
- N = 4, $N_m = N_p = 2$

Particle identification

- Prob(pi)> Prob(p), Prob(pi)> Prob(K)
- $N_{\pi^+} = N_{\pi^-} = 2$

Vertex Fit for $2(\pi^+\pi^-)$

Good photon

- $0 \le TDC \le 14$
- Barrel:

 $E > 0.025 \text{ GeV}, |\cos\theta| < 0.8$

End cap :
 F > 0.050

E > 0.050 GeV, 0.86 <

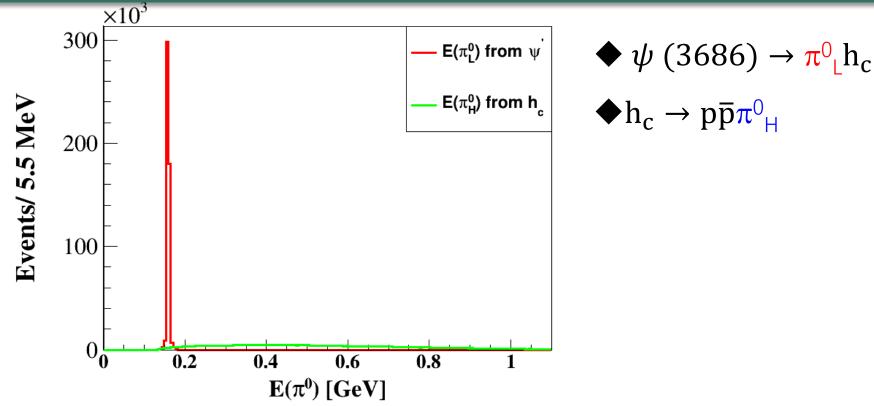
 $|\cos\theta| < 0.92$

• $N_{\gamma} \geq 6$

1C for π^0 :

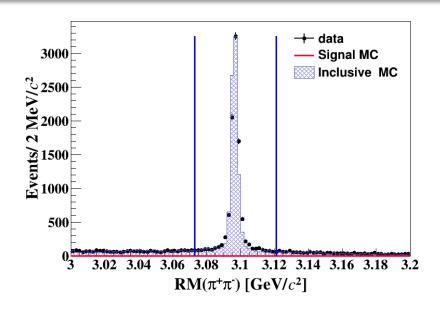
• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.

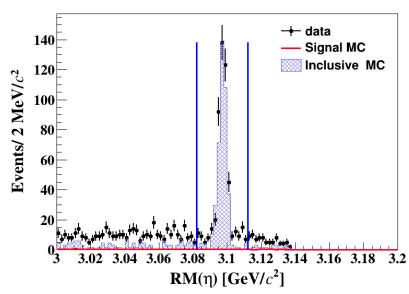
1C for η :

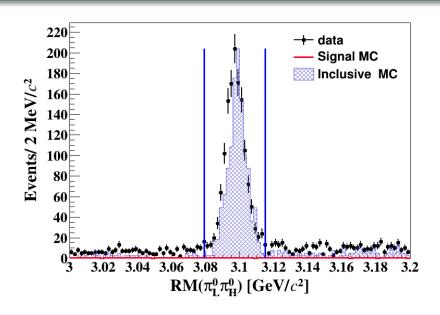

• ..

A 7C kinematic fit with

 $\psi(3686) \rightarrow 2(\pi^+\pi^-)\gamma\gamma\gamma\gamma\gamma\gamma$.

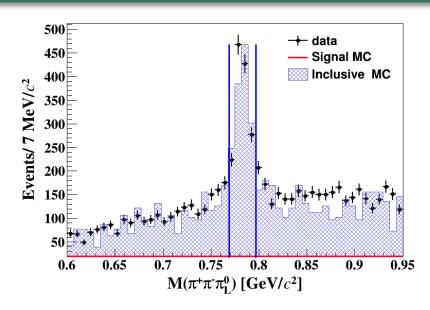

- $\chi^2_{7C} \left(3\pi^0 2(\pi^+\pi^-) \right)$
- Additional 4C kinematic fit for $5\gamma 2(\pi^+\pi^-)$, $6\gamma 2(\pi^+\pi^-)$ and $7\gamma 2(\pi^+\pi^-)$ final states.

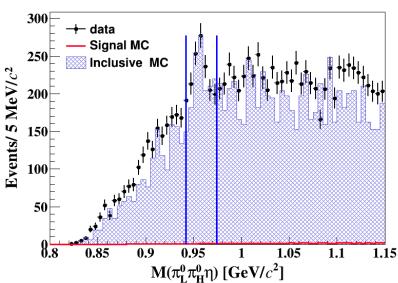

Energy distribution of two π^0

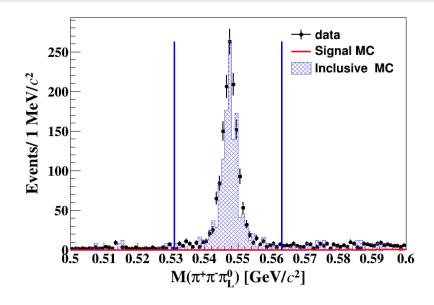


- The energy of bachelor π^0 from $\psi(3686)$ is lower than that from \mathbf{h}_c .
- The lower one is tagged as π^0_L , and the higher one is tagged as π^0_H

Veto on $\psi(3686) \rightarrow \pi \pi J/\psi$ or $\rightarrow \eta J/\psi$

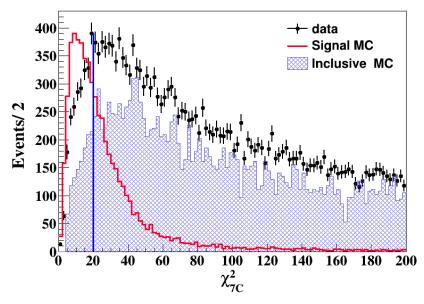


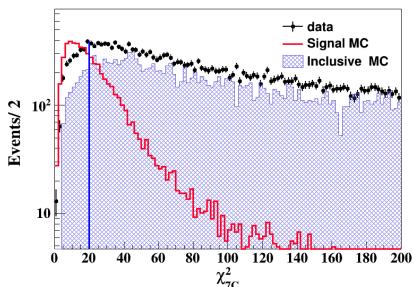


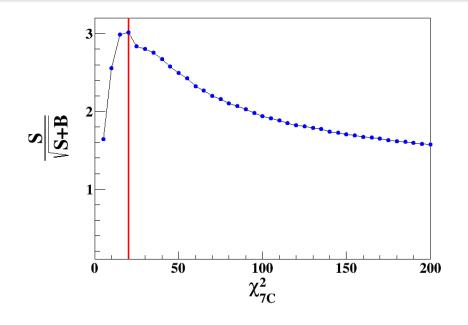


- $> |RM(\pi^+\pi^-) m(J/\psi)| > 22Me V/c^2$
- $ightharpoonup |RM(\pi_L^0 \pi_H^0) m(J/\psi)| > 20 \text{Me V/c}^2$
- $> |RM(\eta) m(J/\psi)| > 15Me V/c^2$

Veto on $\eta/\omega o\pi^+\pi^-\pi^0_L$ or $\eta' o\pi^0_L\pi^0_H\eta$

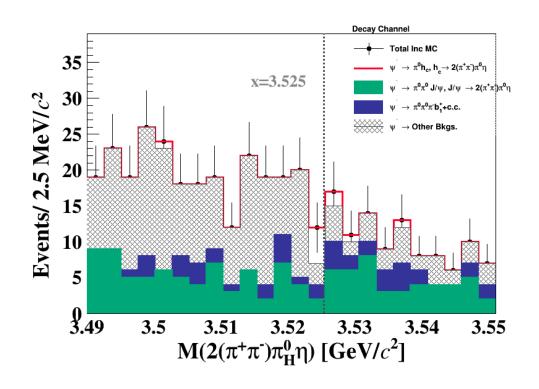


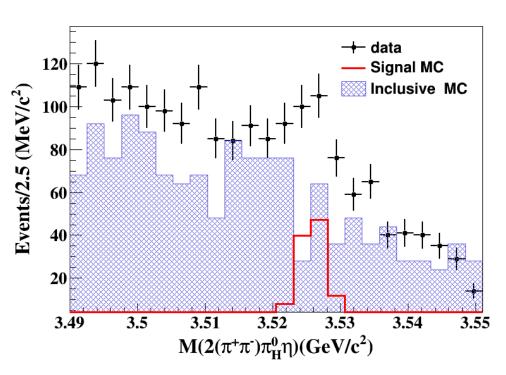




- $|M(\pi^+\pi^-\pi_L^0) m(\omega)| > 0.014 \text{MeV/c}^2$
- $\rightarrow |M(\pi^{+}\pi^{-}\pi_{L}^{0}) m(\eta)| > 0.014 \text{MeV/c}^{2}$
- $|M(\pi_L^0 \pi_H^0 \eta) m(\eta')| > 0.016 \text{Me V/c}^2$

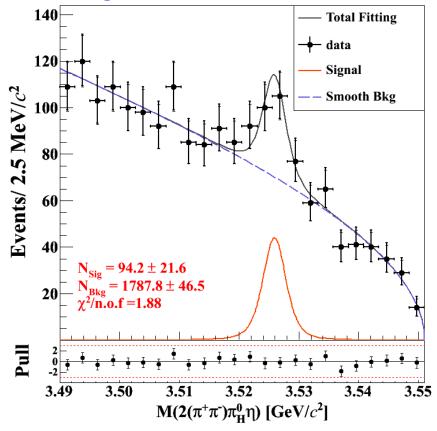
7C kinematic fit


- $>\chi_{7C}^2 < 20$
- ➤ Additional requirement


$$\checkmark \chi_{7C}^2 \left(2\pi^0\eta 2(\pi^+\pi^-)\right) < \chi_{7C}^2 \left(3\pi^0 2(\pi^+\pi^-)\right)$$

$$\checkmark \chi^{2}_{4C}(6\gamma 2(\pi^{+}\pi^{-})) < \chi^{2}_{4C}(5\gamma 2(\pi^{+}\pi^{-}))$$

$$\checkmark \chi^{2}_{4C}(6\gamma 2(\pi^{+}\pi^{-})) < \chi^{2}_{4C}(7\gamma 2(\pi^{+}\pi^{-}))$$


$M(2(\pi^+\pi^-)\pi^0\eta)$

h_c Signal fit

■ Significance = $4.8 * \sigma$

☐ Fitting function is described as:

P. D. F. = $N_{sig} \cdot (MCShape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Argus(r, s, p)$

$$B(h_c \to 2(\pi^+\pi^-)\pi^0\eta) = \frac{N^{obs}}{N_{tot} \cdot B(\psi(3686) \to \pi^0h_c) \cdot B(\pi^0 \to \gamma\gamma)^2 \cdot B(\eta \to \gamma\gamma) \cdot \varepsilon}$$

$$\checkmark Br(\psi(3686) \to \pi^0 h_c) = (8.6 \pm 1.3) \times 10^{-4}$$

$$\checkmark Br(\pi^0 \to \gamma \gamma) = (98.823 \pm 0.034)\%$$

$$\checkmark Br(\eta \to \gamma \gamma) = (39.41 \pm 0.20)\%$$

Mode	N^{obs}	arepsilon(%)	$B(\times 10^{-3})$
$h_c \to 2(\pi^+\pi^-)\pi^0\boldsymbol{\eta}$	94.2±21.6	2.06	~

Mode III:

$$h_c \to 2(\pi^+\pi^-)\eta$$

Initial Event Selection

Charged tracks

- $|R_{xy}| < 1 \, cm, |R_z| < 10 \, cm$
- $|\cos\theta| < 0.93$
- N = 4, $N_m = N_p = 2$

Particle identification

- Prob(pi)> Prob(p), Prob(pi)> Prob(K)
- $N_{\pi^+} = N_{\pi^-} = 2$

Vertex Fit for $2(\pi^+\pi^-)$

Good photon

- $0 \le TDC \le 14$
- Barrel:

 $E > 0.025 \text{ GeV}, |\cos\theta| < 0.8$

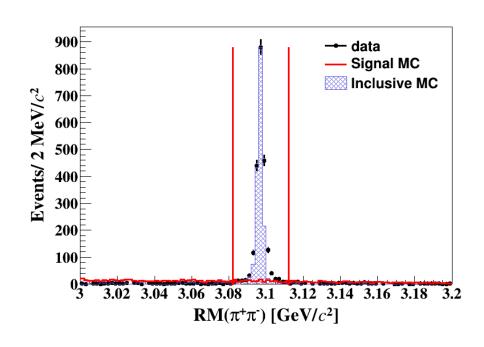
• End cap : $E > 0.050 \text{ GeV}, 0.86 < |cos\theta| < 0.92$

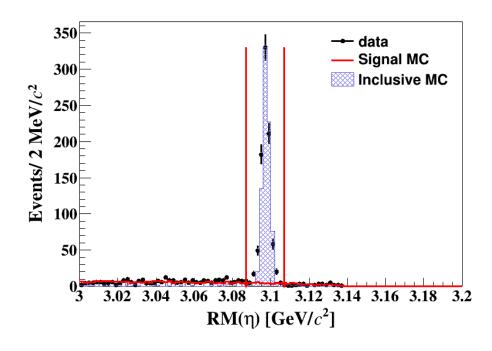
• $N_{\gamma} \geq 4$

1C for π^0 :

• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.

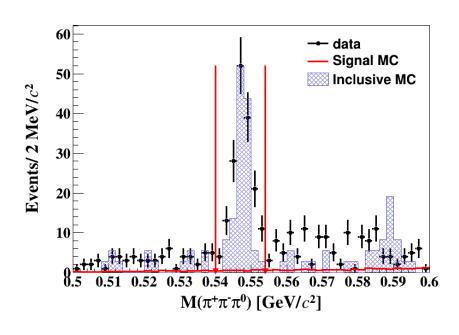
1C for η :

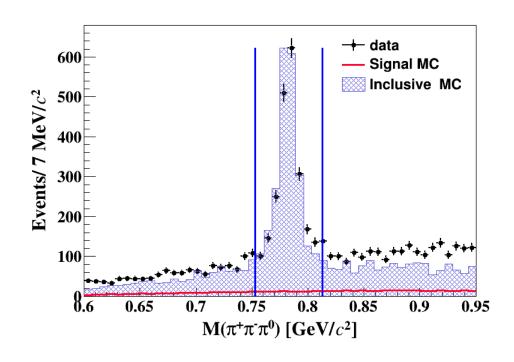

• ..


A 6C kinematic fit with

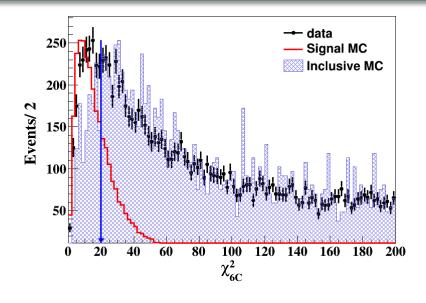
 $\psi(3686) \rightarrow 2(\pi^+\pi^-)\gamma\gamma\gamma\gamma$.

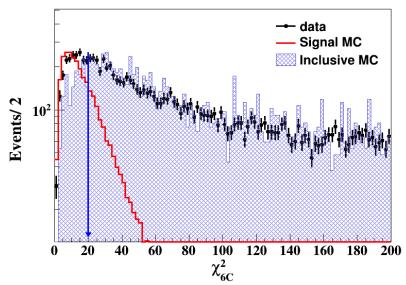
• Additional 4C kinematic fit for $3\gamma 2(\pi^+\pi^-)$, $4\gamma 2(\pi^+\pi^-)$ and $5\gamma 2(\pi^+\pi^-)$ final states.

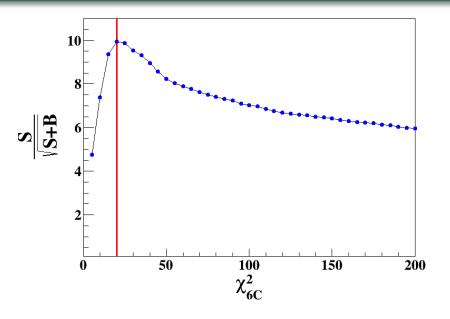

Veto on $\psi(3686) \rightarrow \pi \pi J/\psi$ or $\rightarrow \eta J/\psi$



- $> |RM(\pi^+\pi^-) m(J/\psi)| > 15 \text{ Me V/c}^2$
- $> |RM(\eta) m(J/\psi)| > 10 \text{ Me V/c}^2$

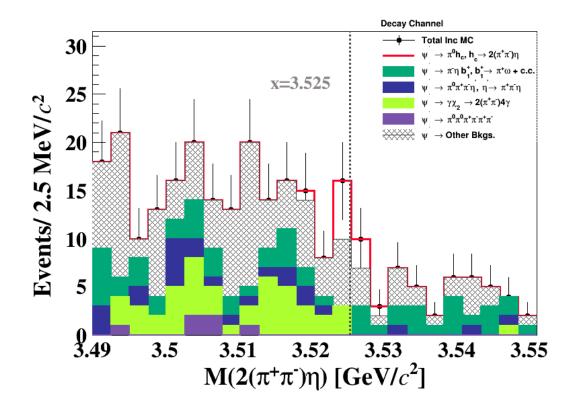

Veto on $\eta/\omega \to \pi^+\pi^-\pi_L^0$





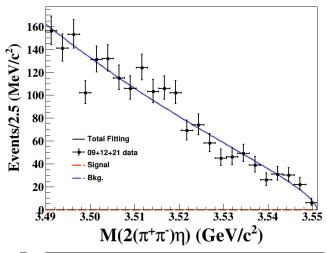
- $\rightarrow |M(\pi^{+}\pi^{-}\pi_{L}^{0}) m(\omega)| > 0.03 \text{ Me V/c}^{2}$
- $|M(\pi^+\pi^-\pi_L^0) m(\eta)| > 0.007 \text{ Me V/c}^2$

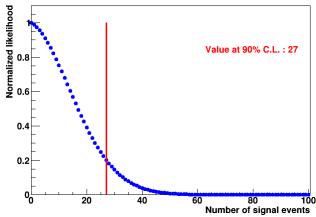
6C kinematic fit



- $>\chi_{6C}^2 < 20$
- ➤ Additional requirement

$$\checkmark \chi^{2}_{4C}(4\gamma 2(\pi^{+}\pi^{-})) < \chi^{2}_{4C}(3\gamma 2(\pi^{+}\pi^{-}))$$


$$\checkmark \ \chi^2_{\ 4C}(\ 4\gamma 2(\pi^+\pi^-)\) < \chi^2_{\ 4C}(\ 5\gamma 2(\pi^+\pi^-)\)$$


$M(2(\pi^+\pi^-)\eta)$

h. Signal fit: Upper limit of number of signal/branching fraction

☐ Fitting function is described as:

P. D. F. =
$$N_{sig} \cdot (MCShape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Argus(r, s, p)$$

☐ Upper limit of number of signal

we determine the upper limit $h_c \to p\bar{p}\pi^0$ with Bayesian method. And, $N_{sig}=$ 27 at 90% C.L..

□ Upper limit of number of branching fraction

$$B(h_c \to 2(\pi^+\pi^-)\eta) < \frac{N^{obs}}{N_{tot} \cdot B(\psi(3686) \to \pi^0 h_c) \cdot B(\pi^0 \to \gamma\gamma) \cdot B(\eta \to \gamma\gamma) \cdot \varepsilon}$$

Mode	N^{sig}	arepsilon(%)	$B(\times 10^{-4})$
$h_c \rightarrow 2(\pi^+\pi^-)\eta$	27	5.25	~

Mode IV:

$$h_c \to p \overline{p} \pi^0$$

Initial Event Selection

Charged tracks

- $|R_{xy}| < 1 \, cm, |R_z| < 10 \, cm$
- $|\cos\theta| < 0.93$
- N = 2, $N_m = N_p = 1$

Particle identification

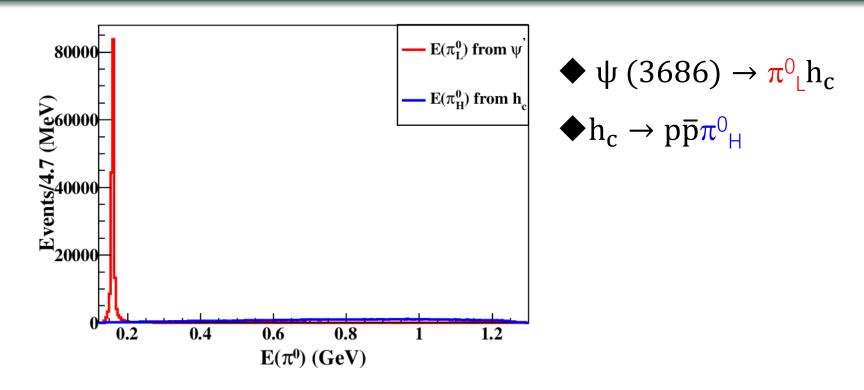
- Prob(p)> Prob(pi), Prob(p)> Prob(K)
- $n(p)=n(\overline{p})=1$

Good photon

- 0 < TDC < 14
- Barrel : $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$
- End cap : $E > 0.050 \text{ GeV}, 0.86 < |cos\theta| < 0.92$
- $N_{\gamma} \geq 4$

1C for π^0 :

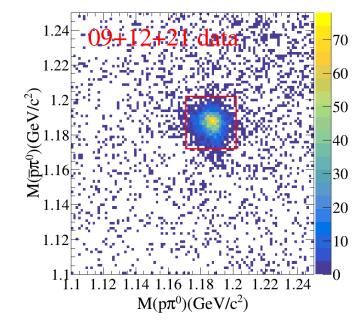
• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.


A 6C kinematic fit with

Vertex Fit for pp

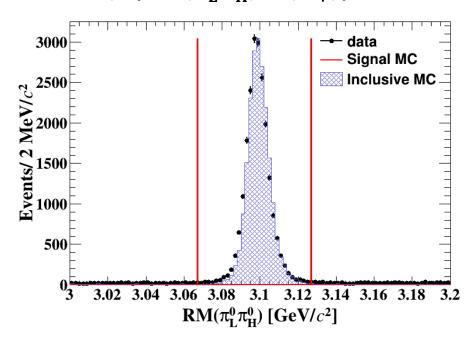
 $\psi(3686) \rightarrow 4\gamma \bar{p}p.$

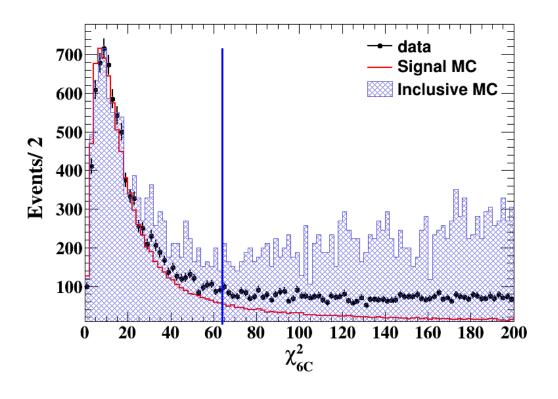
• Additional 4C kinematic fit for $3\gamma \, \overline{p}p$, $4\gamma \, \overline{p}p$ and $5\gamma \, \overline{p}p$ final states.

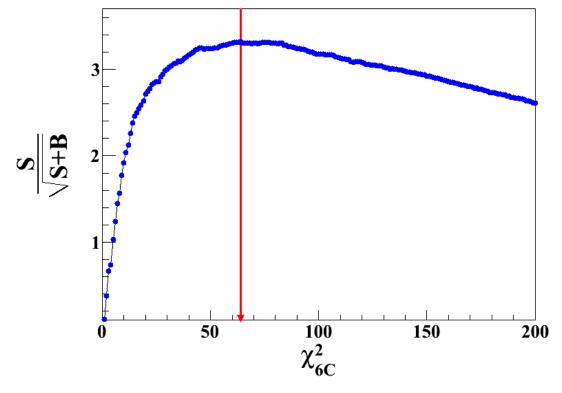

Energy distribution of two π^0

- The energy of bachelor π^0 from $\psi(3686)$ is lower than that from h_c .
- The lower one is tagged as π^0_L , and the higher one is tagged as π^0_H

Veto $\psi(3686) \rightarrow \Sigma^{+}\overline{\Sigma}^{-} \&\&$ Veto $\psi(3686) \rightarrow \pi_{L}^{0}\pi_{H}^{0} J/\psi$

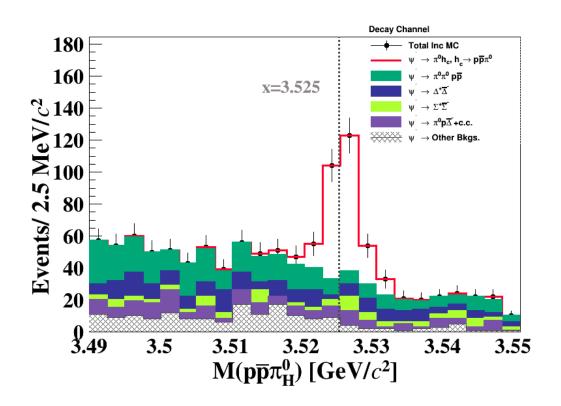

$$lacksquare$$
 A) ! ($\left(1.172 < M_{p\pi^0} < 1.202
ight)$ && $\left(1.171 < M_{\overline{p}\pi^0} < 1.202
ight)$)

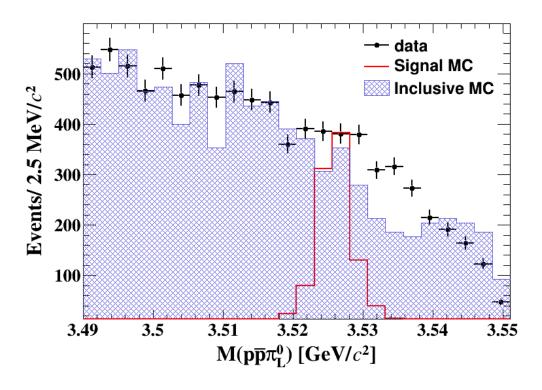

• In the two combinations of $p \pi^0/\bar{p} \pi^0$, which are $p \pi_L^0/\bar{p} \pi_H^0$ and $p \pi_H^0/\bar{p} \pi_L^0$ combinations, we select the one by minimizing


$$\Delta = \sqrt{\left(M_{p\pi^0} - M_{\Sigma^+}\right)^2 + \left(M_{\bar{p}\pi^0} - M_{\bar{\Sigma}^-}\right)^2}$$

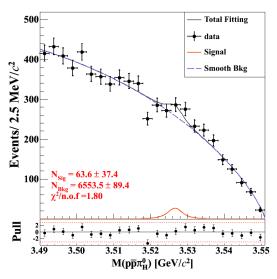
□ B) | RM($\pi_L^0 \pi_H^0$)- m(J/ ψ)| > 30 MeV/c²

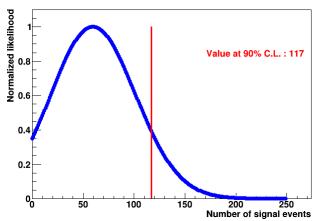
6C kinematic fit




- $> \chi^2_{6C} < 64$
- > Additional requirement

$$-\chi^2_{4C}(4\gamma p\bar{p}) < \chi^2_{4C}(3\gamma p\bar{p})$$


$$-\chi^2_{4C}(4\gamma p\bar{p}) < \chi^2_{4C}(5\gamma p\bar{p})$$


$M(p\overline{p}\pi^0)$

h_c Signal fit: Upper limit of number of signal/branching fraction

☐ Fitting function is described as:

P. D. F. = $N_{sig} \cdot (MCShape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Argus(r, s, p)$

☐ Upper limit of number of signal

we determine the upper limit $h_c \to p \bar{p} \pi^0$ with Bayesian method.

And, $N_{sig} = 117$ at 90% C.L..

□Upper limit of number of branching fraction

$$B(h_c \to p\bar{p}\pi^0) < \frac{N^{obs}}{N_{tot} \cdot B(\psi(3686) \to \pi^0 h_c) \cdot B(\pi^0 \to \gamma\gamma) \cdot B(\pi^0 \to \gamma\gamma) \cdot \varepsilon}$$

Mode	N^{sig}	arepsilon(%)	$B(\times 10^{-4})$
$h_c \to p \bar{p} \pi^0$	117	23.00	~

Mode V:

$$h_c \to p\overline{p}$$

Initial Event Selection

Charged tracks

- $|R_{xy}| < 1 \, cm, |R_z| < 10 \, cm$
- $|\cos\theta| < 0.93$
- N = 2, $N_m = N_p = 1$

Particle identification

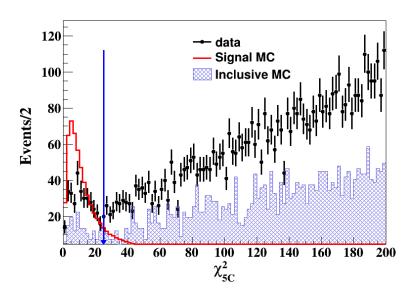
- Prob(p)> Prob(pi), Prob(p)>Prob(K)
- $n(p)=n(\overline{p})=1$

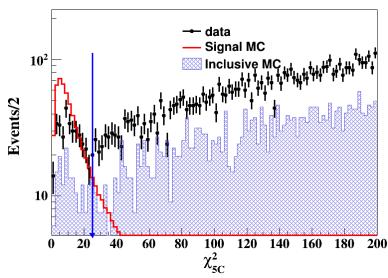
Good photon

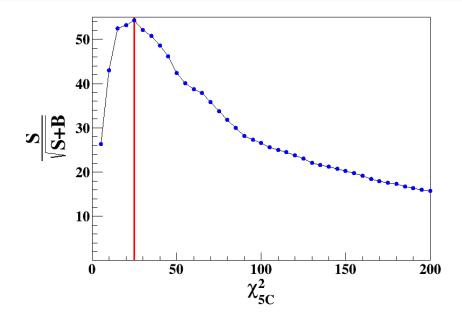
- 0 < TDC < 14
- Barrel : $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$
- End cap : $E > 0.050 \text{ GeV}, 0.86 < |cos\theta| < 0.92$
- $N_{\gamma} \geq 2$

1C for π^0 :

• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.

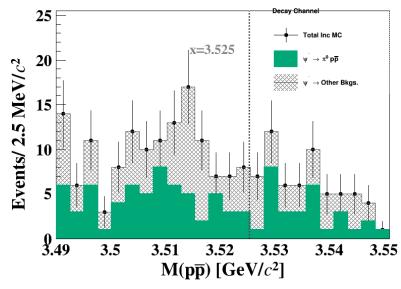

A 5C kinematic fit with


Vertex Fit for pp


 $\psi(3686) \rightarrow 2\gamma \bar{p}p$.

• Additional 4C kinematic fit for $1\gamma \bar{p}p$, $2\gamma \bar{p}p$ and $3\gamma \bar{p}p$ final states.

5C kinematic fit



- $\geq \chi^2_{5C} < 25$
- Additional requirement

$$-\chi^2_{4C}(2\gamma p\bar{p}) < \chi^2_{4C}(1\gamma p\bar{p})$$

$$-\chi^2_{4C}(2\gamma p\bar{p}) < \chi^2_{4C}(3\gamma p\bar{p})$$

$M(p\overline{p})$

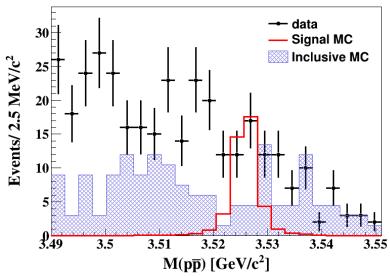
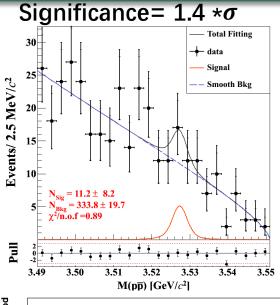
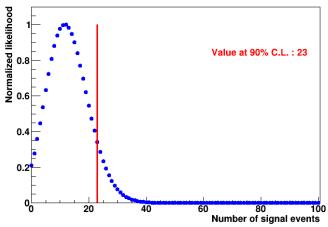




Table 1: Decay trees and their respective final states.

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$\psi' o \pi^0 p \bar{p}$	$\pi^0 p \bar{p}$	0	112	112
2	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to e^+ e^-$	$e^{+}e^{-}\pi^{0}\pi^{0}\pi^{0}$	4	49	161
3	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to e^+ e^- \gamma^f$	$e^+e^-\pi^0\pi^0\pi^0\gamma^f$	1	15	176
4	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to e^+ e^-$	$e^{+}e^{-}\pi^{0}\pi^{0}$	8	13	189
5	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to \mu^+ \mu^-$	$\mu^{+}\mu^{-}\pi^{0}\pi^{0}\pi^{0}$	9	11	200
6	$\psi' o \chi_{c2} \gamma, \chi_{c2} o p \bar{p}$	$p \bar{p} \gamma$	5	8	208
7	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to e^+ e^- \gamma^f$	$e^+e^-\pi^0\pi^0\gamma^f$	3	7	215
8	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \mu^+ \mu^- \gamma^f$	$\mu^+\mu^-\pi^0\pi^0\gamma^f$	2	4	219
9	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to \mu^+ \mu^- \gamma^f$	$\mu^{+}\mu^{-}\pi^{0}\pi^{0}\pi^{0}\gamma^{f}$	7	4	223
10	$\psi' o \chi_{c1} \gamma, \chi_{c1} o p \bar{p}$	$par{p}\gamma$	10	4	227
11	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \mu^+ \mu^-$	$\mu^{+}\mu^{-}\pi^{0}\pi^{0}$	13	3	230
12	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to e^+ e^- \gamma^f \gamma^f$	$e^+e^-\pi^0\pi^0\gamma^f\gamma^f$	20	3	233
13	$\psi' o p \bar p \gamma^f$	$par{p}\gamma^f$	6	2	235
14	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to e^+ e^- \gamma^f \gamma^f$	$e^+e^-\pi^0\pi^0\pi^0\gamma^f\gamma^f$	11	2	237
15	$\psi' \to \chi_{c0} \gamma, \chi_{c0} \to \Sigma^+ \bar{\Sigma}^-, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^0\pi^0 p \bar p \gamma$	14	1	238
16	$\psi' o \bar{p}\Delta^+, \Delta^+ o \pi^0 p$	$\pi^0 p \bar{p}$	15	1	239
17	$\psi' \rightarrow \eta J/\psi, \eta \rightarrow \pi^0 \pi^+ \pi^-, J/\psi \rightarrow e^+ e^- \gamma^f$	$e^+e^-\pi^0\pi^+\pi^-\gamma^f$	16	1	240
18	$\psi' \to \Sigma^+ \bar{\Sigma}^-, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^0\pi^0 p \bar{p}$	17	1	241
19	$\psi' \to \Lambda \bar{\Lambda}, \Lambda \to \pi^- p, \bar{\Lambda} \to e^+ \nu_e \bar{p}$	$e^+ \nu_e \pi^- p \bar{p}$	18	1	242
20	$\psi' o \chi_{c2} \gamma, \chi_{c2} o p \bar{p} \gamma^f$	$par{p}\gamma\gamma^f$	19	1	243
21	$\psi' o p ar p \gamma^F$	$p\bar{p}\gamma^F$	12	1	244

h. Signal fit: Upper limit of number of signal/branching fraction

☐ Fitting function is described as:

P. D. F. =
$$N_{sig} \cdot (MCShape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Argus(r, s, p)$$

☐ Upper limit of number of signal

we determine the upper limit $h_c o par p\pi^0$ with Bayesian method.

And, $N_{sig} = 23$ at 90% C.L..

□Upper limit of number of branching fraction

$$B(h_c \to p\bar{p}) < \frac{N^{obs}}{N_{tot} \cdot B(\psi(3686) \to \pi^0 h_c) \cdot B(\pi^0 \to \gamma\gamma) \cdot \varepsilon}$$

Mode	N ^{sig}	arepsilon(%)	$B(\times 10^{-5})$
$h_c o p \overline{p}$	23	17.38	~

Summary & Next to do

Mode	N_{h_c}	ε(%)	$Br(h_c \to X)$ (this work)	Significan $ce(\sigma)$	$Br(h_c \to X)$ 1,2(pre.result)
$h_c \to 3(\pi^+\pi^-)\pi^0$	386.5±60.3	3.92	~10 ⁻³	6.6	< 9× 10 ⁻³
$h_c \to 2(\pi^+\pi^-)\pi^0\eta$	94.2±21.6	2.06	~10 ⁻³	4.8	
$h_c \to 2(\pi^+\pi^-)\eta$	<27	5.25	~ 10 ⁻⁴		
$h_c \to p \bar{p} \pi^0$	<117	23.00	~ 10 ⁻⁴		$<6.59\times10^{-4}$
$h_c o p \bar{p}$	<23	17.38	~ 10 ⁻⁵		<1.5× 10 ⁻⁴

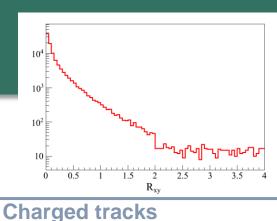
- \triangleright Using 448M + 2280M ψ(3686) data sample collected at BESIII in 2009, 2012 and 2021
- Vertice the signals of $h_c \to 3(\pi^+\pi^-)\pi^0$ is observed for the **first time**; and observed strong evidence of $h_c \to 2(\pi^+\pi^-)\pi^0\eta$.
- ✓ No obvious signal for $h_c \to 2(\pi^+\pi^-)\eta$, $h_c \to p\bar{p}\pi^0$, $h_c \to p\bar{p}$ is observed and the corresponding upper limits of the branching fractions is given at 90% C.L. .

- Next to do
- Optimize the selection criteria
- To study the intermediate state process of each mode
- Systematics
- \square Search for more $\mathbf{h_c}$ hadronic decay patterns

SP Part II:

Search for $\psi(3686) \rightarrow \Sigma^{+} \overline{\Sigma}^{-} \omega$

Outline


- **≻**Motivation
- ➤ Data Sample and MC Simulation
- ➤ Initial Event Selection
- Further Event Selection
- ➤ Scatter & Dalitz plot
- >Fit result
- **>**Summary

Motivation

- Many studies of flavor SU(2) and SU(3) allowed and forbidden baryonic decay in J/ψ and $\psi(3686)$ have been done. For example, $J/\psi \to \Xi^+ \bar{\Xi}^- + c.c.$, $\Sigma^{*+} \bar{\Sigma}^{*-} + c.c.$, are SU(2) and SU(3) allowed decay modes, whereas $J/\psi \to \Sigma^0 \bar{\Lambda}$, $\Xi^{*0} \bar{\Xi}^{*0}$ SU(2) and SU(3) forbidden decay modes. Among these decay channels, the branching ratios of allowed decay modes are much higher than those of forbidden modes.
- However, the isospin-conserved decay of $\psi(3686) \to \Lambda \bar{\Lambda} \omega$ has been observed (BAM-00366) with a preliminary branching fraction of $(3.42 \pm 0.34 \pm 0.31) \times 10^{-5}$, but no any report about the decay mode $\psi(3686) \to \Sigma^+ \bar{\Sigma}^- \omega$. We can try to search for this decay and search for the potential Σ^* state or threshold enhancement in baryon pair mass spectrum.

Dataset

- ➤BOSS version: 664p03
- The Data sample: $448M \psi(3686)$ taken in 2009 and 2012
- Finclusive MC: 506M ψ (3686) Inclusive MC of which for 106M for 2009 and 400M for 2012
- Signal MC: 2009: 2012=1: 4 total 0.5 M for $\psi(3686) \to \Sigma^+ \bar{\Sigma}^- \omega, \Sigma^+ \to p\pi^0, \bar{\Sigma}^- \to p\pi^0, \omega \to \pi^+\pi^-\pi^0$

Initial Event Selection

Particle identification

- Prob(p)> Prob(pi), Prob(p)> Prob(K)
- Prob(pi)> Prob(p), Prob(pi)> Prob(K)
- $N_p = N_{\overline{p}} = N_{\pi^+} = N_{\pi^-} = 1$;

• $|R_{xy}| < 2cm$, $|R_z| < 10cm$

- $|\cos\theta| < 0.93$
- N = 4, $N_m = N_p = 2$

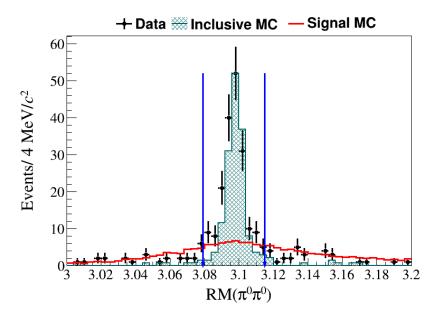
Good photon

- $0 \le TDC \le 14$
- Barrel : $E > 0.025 \text{ GeV}, |cos\theta| < 0.8$
- End cap : E > 0.050 GeV, $0.86 < |cos\theta| < 0.92$
- $N_{\gamma} \geq 6$

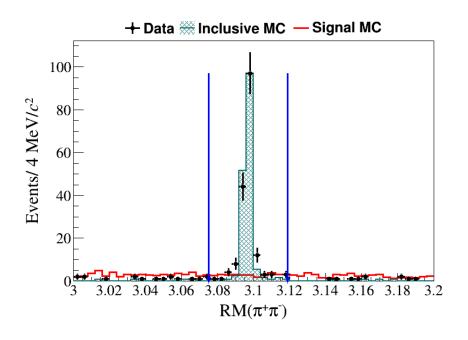
1C for π^0 :

• A kinematic fit is performed on the selected photon pairs by constraining their invariant mass to the π^0 mass.

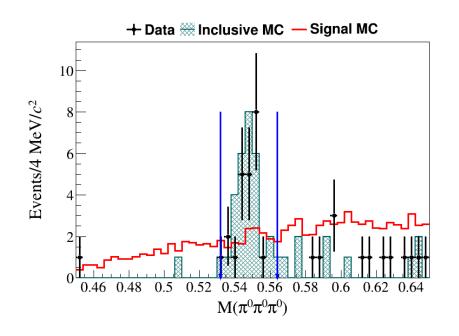
A 7C kinematic fit with

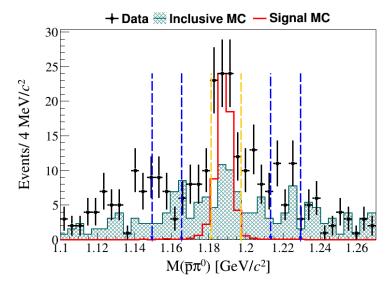

• Additional 4C kinematic fit for $5\gamma \bar{p}p\pi^+\pi^-$, $6\gamma \bar{p}p\pi^+\pi^-$ and $7\gamma \bar{p}p\pi^+\pi^-$ final states.

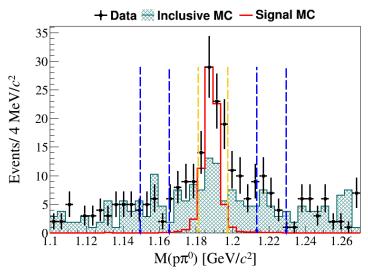
 $\psi(3686) \rightarrow p\bar{p}\pi^+\pi^-\gamma\gamma\gamma\gamma\gamma\gamma$.


•
$$\Delta_{min} = \sqrt{(M_{\pi^+\pi^-\pi^0} - m_{\omega})^2 + (M_{p\pi^0} - m_{\Sigma^+})^2 + (M_{\overline{p}\pi^0} - m_{\overline{\Sigma}^-})^2} \Rightarrow \Sigma_{\min}^+, \overline{\Sigma}_{\min}^-, \omega_{\min}$$

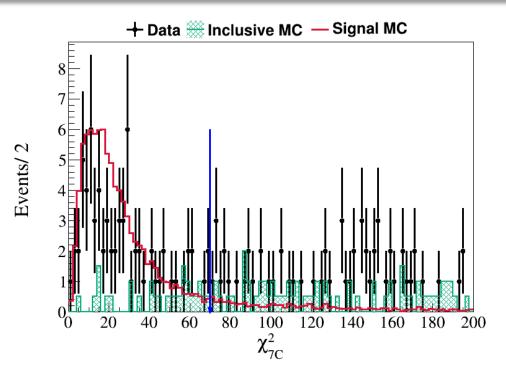
Further Event Selection II: Veto on $\psi(3686) \rightarrow \pi \pi J/\psi$


 $\qquad \left| RM \left(\pi^0 \pi^0 \right) - m(J/\psi) \right| > 20 \; Me \, V/c^2$




■ $|RM(\pi^+\pi^-) - m(J/\psi)| > 20Me V/c^2$

Further Event Selection III: Veto on $\eta o\pi^0\pi^0\pi^0$

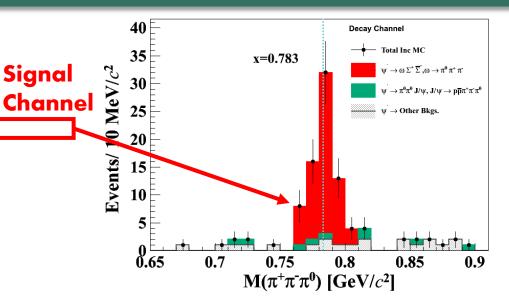


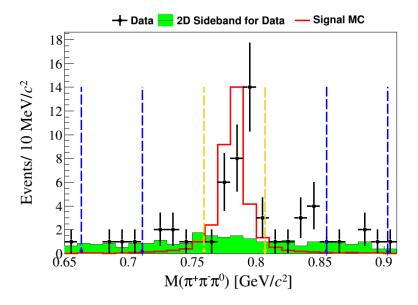
$$|M(\pi^+\pi^-\pi^0) - m(\eta)| > 16 Me V/c^2$$

$$|M(p\pi_{\Sigma}^0) - m(\Sigma^+)| < 8MeV/c^2$$

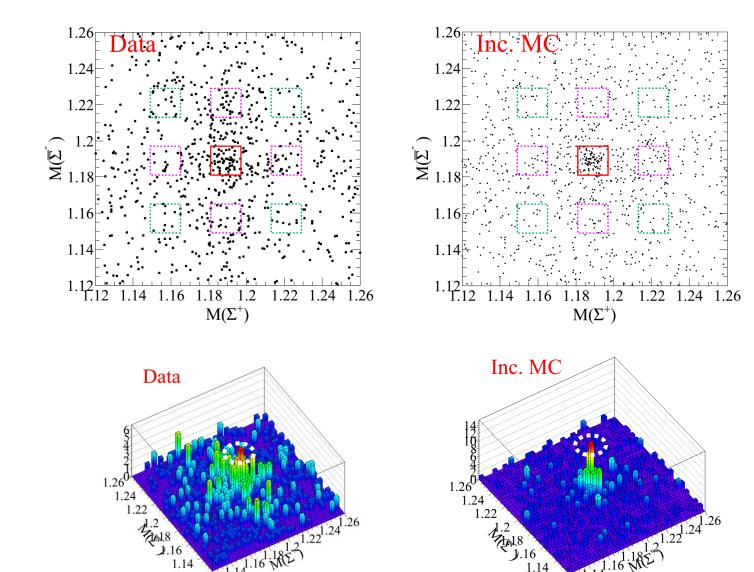
Further Event Selection IV: 7C kinematic fit

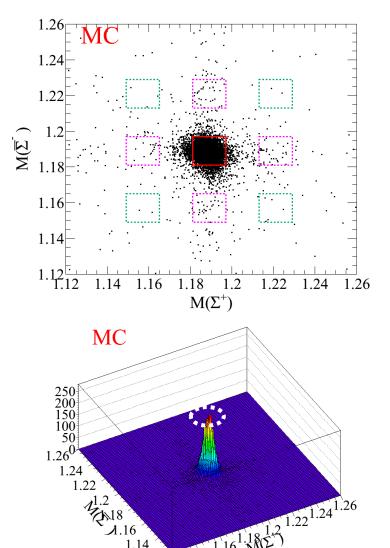
- $> \chi_{7C}^2 < 60$
- ➤ Additional requirement
 - $-\chi^{2}_{4C}(6\gamma pp\pi^{+}\pi^{-}) < \chi^{2}_{4C}(5\gamma pp\pi^{+}\pi^{-})$
 - $-\chi^{2}_{4C}(6\gamma pp\pi^{+}\pi^{-}) < \chi^{2}_{4C}(7\gamma pp\pi^{+}\pi^{-})$

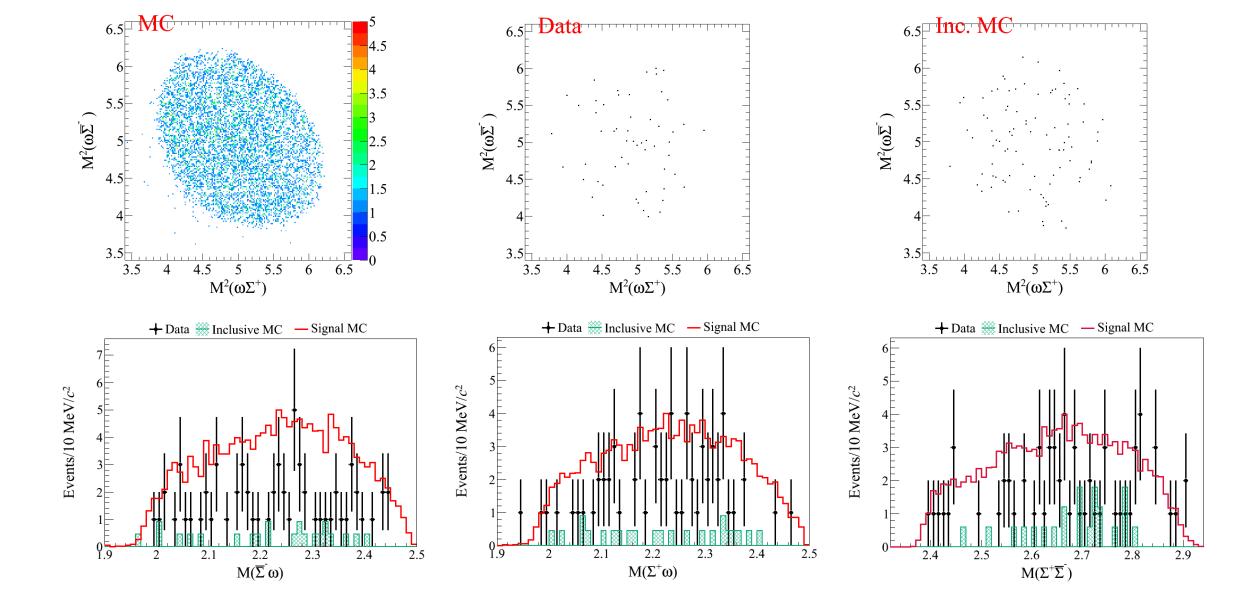

Background Study && $M(\pi^+\pi^-\pi^0)$


Signal

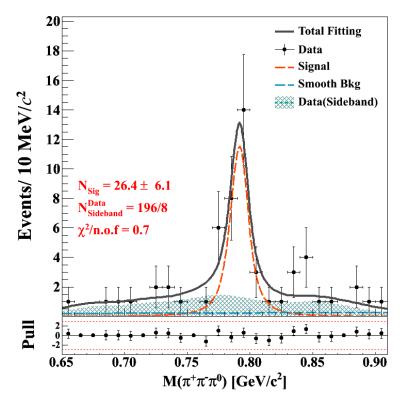
After all the selections, the rest of inclusive MC sample is listed:


Table 1: Decay trees and their respective final states.

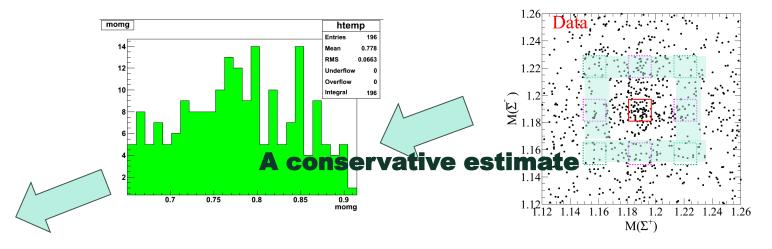

rowNo	decay tree	decay final state	iDcyTr	nEtr	nCEtr
1	$\psi' \to \omega \Sigma^+ \bar{\Sigma}^-, \omega \to \pi^0 \pi^+ \pi^-, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	0	65	65
2	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^0 \pi^+ \pi^- p\bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	1	5	70
3	$\psi' \to K^{*-} \Delta^{++} \bar{\Sigma}^{-}, K^{*-} \to \pi^{-} \bar{K}^{0}, \Delta^{++} \to \pi^{+} p, \bar{\Sigma}^{-} \to \pi^{0} \bar{p}, \bar{K}^{0} \to K^{0}_{S}, K^{0}_{S} \to \pi^{0} \pi^{0}$	$\pi^0\pi^0\pi^0\pi^0\pi^+\pi^-p\bar{p}$	10	2	72
4	$\psi' \rightarrow \chi_{c0} \gamma, \chi_{c0} \rightarrow \pi^+ \pi^- \Delta^+ \bar{\Delta}^+, \Delta^+ \rightarrow \pi^0 p, \bar{\Delta}^+ \rightarrow \pi^0 \bar{p}$	$\pi^0\pi^0\pi^+\pi^-p\bar{p}\gamma$	3	1	73
5	$\psi' \to \omega \Sigma^+ \bar{\Sigma}^-, \omega \to \pi^0 \pi^+ \pi^- \gamma^f, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}\gamma^{f}$	4	1	74
6	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \pi^0 \Delta^{++} \bar{\Delta}^{++}, \Delta^{++} \to \pi^+ p, \bar{\Delta}^{++} \to \pi^- \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	5	1	75
7	$\psi' \to \pi^0 \pi^0 J/\psi, J/\psi \to \bar{\Sigma}^- \Sigma^{*+}, \bar{\Sigma}^- \to \pi^0 \bar{p}, \Sigma^{*+} \to \pi^+ \Lambda, \Lambda \to \pi^- p$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	6	1	76
8	$\psi' \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \pi^+ \Delta^0 \bar{p} \gamma^F, \Delta^0 \rightarrow \pi^- p$	$\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}\gamma^{F}$	7	1	77
9	$\psi' \to K^{*+} \bar{\Delta}^+ \Sigma^0, K^{*+} \to \pi^+ K^0, \bar{\Delta}^+ \to \pi^0 \bar{p}, \Sigma^0 \to \Lambda \gamma, K^0 \to K_S^0, \Lambda \to \pi^- p, K_S^0 \to \pi^0 \pi^0$	$\pi^0\pi^0\pi^0\pi^0\pi^+\pi^-p\bar{p}\gamma$	8	1	78
10	$\psi' \to \pi^0 h_c, h_c \to \rho^0 \Sigma^+ \bar{\Sigma}^-, \rho^0 \to \pi^+ \pi^-, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	9	1	79
11	$\psi' \to \pi^- \rho^+ \Sigma^+ \bar{\Sigma}^-, \rho^+ \to \pi^0 \pi^+, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	2	1	80
12	$\psi' \to \chi_{c0} \gamma, \chi_{c0} \to p\bar{p}b_1^0, b_1^0 \to \pi^0 \omega, \omega \to \pi^0 \pi^+ \pi^-$	$\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}\gamma$	11	1	81
13	$\psi' \to \pi^+\pi^- J/\psi, J/\psi \to \bar{\Sigma}^- \Sigma^{*+}, \bar{\Sigma}^- \to \pi^0 \bar{p}, \Sigma^{*+} \to \pi^0 \Sigma^+, \Sigma^+ \to \pi^0 p$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	12	1	82
14	$\psi' \rightarrow \pi^0 h_c, h_c \rightarrow p\bar{p}b_1^0, b_1^0 \rightarrow \pi^0 \omega, \omega \rightarrow \pi^0 \pi^+ \pi^-$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	13	1	83
15	$\psi' \to \pi^0 \Xi^0 \bar{\Xi}^0, \Xi^0 \to \pi^0 \Lambda, \bar{\Xi}^0 \to \pi^0 \bar{\Lambda}, \Lambda \to \pi^- p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	14	1	84
16	$\psi' \to p\bar{\Delta}^+ b_1^0, \bar{\Delta}^+ \to \pi^0 \bar{p}, b_1^0 \to \pi^0 \omega, \omega \to \pi^0 \pi^+ \pi^-$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	15	1	85
17	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to \rho^- \bar{\Sigma}^0 \Sigma^+, \rho^- \to \pi^0 \pi^-, \bar{\Sigma}^0 \to \bar{\Lambda} \gamma, \Sigma^+ \to \pi^0 p, \\ \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^0\pi^0\pi^+\pi^-p\bar{p}\gamma\gamma$	16	1	86
18	$\psi' \rightarrow \chi_{c2}\gamma, \chi_{c2} \rightarrow p\bar{p}b_1^0, b_1^0 \rightarrow \pi^0\omega, \omega \rightarrow \pi^0\pi^+\pi^-$	$\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}\gamma$	17	1	87
19	$\psi' \to \eta J/\psi, \eta \to \pi^0 \pi^0 \pi^0, J/\psi \to \pi^0 \Delta^{++} \bar{\Delta}^{++}, \Delta^{++} \to \pi^+ p, \bar{\Delta}^{++} \to \pi^- \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	18	1	88
20	$\psi' \to \rho^- \bar{\Sigma}^{*0} \Sigma^+, \rho^- \to \pi^0 \pi^-, \bar{\Sigma}^{*0} \to \pi^0 \bar{\Lambda}, \Sigma^+ \to \pi^0 p, \bar{\Lambda} \to \pi^+ \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	19	1	89
21	$\psi' \rightarrow \pi^0 \pi^0 J/\psi, J/\psi \rightarrow \omega p \bar{p}, \omega \rightarrow \pi^0 \pi^+ \pi^-$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	20	1	90
22	$\psi' \to \pi^+\pi^- J/\psi, J/\psi \to \pi^0 \Sigma^+ \bar{\Sigma}^-, \Sigma^+ \to \pi^0 p, \bar{\Sigma}^- \to \pi^0 \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	21	1	91
23	$\psi' \to \chi_{c1} \gamma, \chi_{c1} \to \rho^+ \Sigma^0 \bar{\Sigma}^-, \rho^+ \to \pi^0 \pi^+, \Sigma^0 \to \Lambda \gamma, \bar{\Sigma}^- \to \pi^0 \bar{p}, \\ \Lambda \to \pi^- p$	$\pi^0\pi^0\pi^+\pi^-p\bar{p}\gamma\gamma$	22	1	92
24	$\psi' \rightarrow \eta J/\psi, \eta \rightarrow \pi^0 \pi^0 \pi^0, J/\psi \rightarrow \pi^+ \pi^- p\bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	23	1	93
25	$\psi' \rightarrow \eta J/\psi, \eta \rightarrow \pi^0 \pi^0 \pi^0, J/\psi \rightarrow \Delta^{++} \bar{\Delta}^{++}, \Delta^{++} \rightarrow \pi^+ p, \bar{\Delta}^{++} \rightarrow \pi^- \bar{p}$	$\pi^{0}\pi^{0}\pi^{0}\pi^{0}\pi^{+}\pi^{-}p\bar{p}$	24	1	94



Scatter Plot of $M(\overline{\Sigma}^-)$ v.s. $M(\Sigma^+)$



Dalitz Plot of $M(\omega \overline{\Sigma}^{-})^{2}$ v.s. $M(\omega \Sigma^{+})^{2}$



Fit to data & preliminary result

■ Significance: $6.5 * \sigma$

- $B(\Sigma \to p\pi^0) = 51.57\%$
- $B(\omega \to \pi^+\pi^-\pi^0)=89.3\%$
- $B(\pi^0 \rightarrow \gamma \gamma) = 98.82\%$

■ Fitting function is described as:

 $N_{sig} \cdot (MCshape \otimes Gaussian(m, \sigma)) + N_{bkg} \cdot Chebychev + N_{SD}^{Bkg} \cdot SDshape$

$$B(\psi(3686) \to \Sigma^{+}\overline{\Sigma}^{-}\omega) = \frac{N^{obs}}{N_{\psi(3686)} \cdot B^{2}(\Sigma \to p\pi^{0}) \cdot B(\omega \to \pi^{+}\pi^{-}\pi^{0}) \cdot B^{3}(\pi^{0} \to \gamma\gamma)}$$

Mode	N^{obs}	arepsilon(%)	$B(\times 10^{-5})$
$h_c o p \bar p \pi^0$	26.4±6.1	1.41	1.82±0.42

Summary & Next to do

Using 448M ψ (3686) data sample collected at BESIII in 2009 and 2012

The signals of $\psi(3686) \to \Sigma^+ \overline{\Sigma}^- \omega$ is observed for the **first time**; and the preliminary BR is found to be comparable with $\psi(3686) \to \Lambda \overline{\Lambda} \omega$:

$$Br(\psi(3686) \to \Sigma^{+}\bar{\Sigma}^{-}\omega)$$

(1.82±0.42)× **10**⁻⁵

$$Br(\psi(3686) \to \Lambda \bar{\Lambda} \omega)^{1}$$

(3.42 ± 0.34(stat) ± 0.31(syst.)) × **10**⁻⁵

- \triangleright No obvious structure found in the $\omega\Sigma$ system.
- \triangleright No abnormal structure found in the $\Sigma^+ \bar{\Sigma}^-$ system.

Next to do

- > Systematic uncertainty.
- > Run the latest² ~2.5 billion $\psi(3686)$ data.

Thank You!

Optimization with FOM approach

◆ A figure-of-merit (FOM) approach is performed to optimize the selection criteria.

$$FOM = \frac{S}{\sqrt{S+B}}$$

S: expected yield of signal in data, estimated from the equation

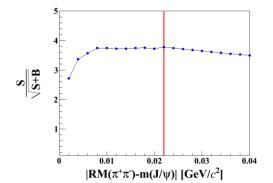
$$S = N_{\psi(3686)}^{09+12data} \cdot \prod_{i} \mathcal{B}_{i} \cdot \epsilon^{MC}$$

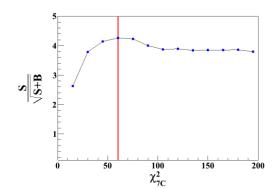
(has been re-normalized with our pre-measured branching fraction.)

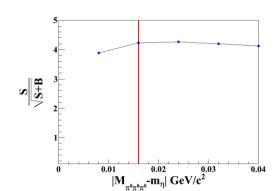
B: normalized background events from the inclusive MC sample to data according to the ratio of the $\psi(3686)$ events. (has been normalized to the data size.)

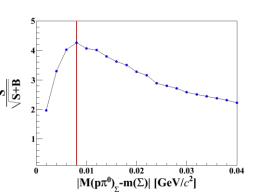
Further Event Selection I: Optimization with FOM approach

◆ A figure-of-merit (FOM) approach is performed to optimize the selection criteria.

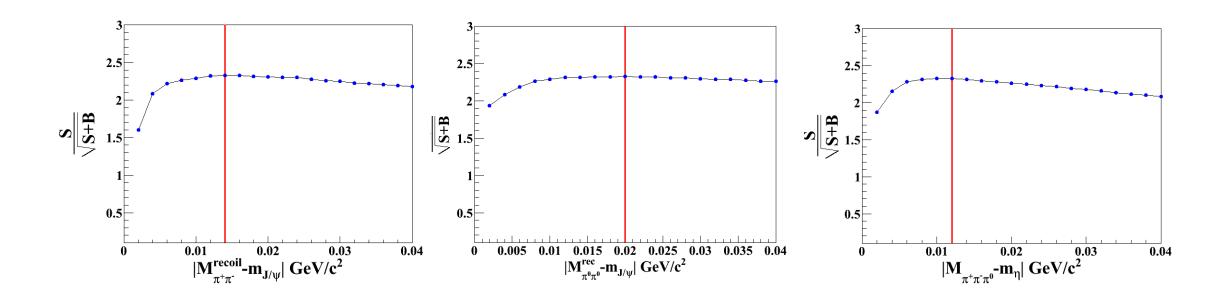

$$FOM = \frac{S}{\sqrt{S+B}}$$

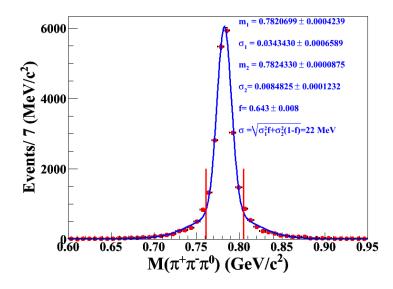

S: expected yield of signal in data, estimated from the equation

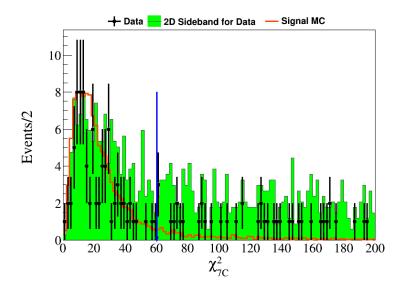

$$S = N_{\psi(3686)}^{09+12data} \cdot \prod_{i} \mathscr{B}_{i} \cdot \epsilon^{MC}$$


(has been re-normalized with our pre-measured branching fraction.)

B: normalized background events from the inclusive MC sample to data according to the ratio of the $\psi(3686)$ events. (has been normalized to the data size.)







Mode I

