Status update on JadePix development

Yunpeng Lu

On behalf of the JadePix team

2021/12/22

- Overview of pixel development
- Highlights of JadePix-3
- Design of JadePix-4
- Summary

Physics process and performance requirement

- Efficient tagging of heavy quarks (b/c) and τ leptons \rightarrow impact parameter resolution $\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV) \sin^{3/2} \theta} (\mu m)$
- Performance requirement
 - High resolution → small pixel pitch
 - Low material \rightarrow Thinning, low power
 - Close to the IP \rightarrow Fast readout, radiation hard

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH, Z \to e^+e^-, \mu^+\mu^-$ $H \to \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV})\sin^{3/2}\theta}$
$H \rightarrow b \bar{b} / c \bar{c} / g g$	${\rm BR}(H\to b\bar{b}/c\bar{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$H \to q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma^{ m jet}_E/E=$ 3 $\sim 4\%$ at 100 GeV
$H \to \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\begin{array}{l} \Delta E/E = \\ \frac{0.20}{\sqrt{E({\rm GeV})}} \oplus 0.01 \end{array}$

physics process and performance req. on CEPC

Physics driven requirements	Running constraints	Sensor specifications	
σ _{s.p.} 2.8 μm		> Small pixel ~16 µm	
Material budget 0.15% X ₀ / layer		> Thinning <mark>~50 μm</mark>	
	⇒ Air cooling	> Low power <50 mW / cm	2
r of Inner most layer	> beam-related backgrou	nd $\rightarrow \rightarrow$ Fast readout $1 \sim 100 \ \mu s$	- Aller
L	> radiation damage	> Radiation tolerance 3.4 Mrad / year 6.2×10 ¹² n _{eq} / (cm ² year)	Service State

Single point resolution

- Pixel pitch dominant, with interpolation on the hit cluster
 - Binary w/ interpolation:
 Pitch 16~18 μm required
 - Analog readout:
 Best <u>resolution</u> with a cost on power & <u>readout speed</u>

Power and readout speed

- Readout architecture dominated
 - Low power FE w/ in-pixel discr., O(10) nA/pixel
 - Hit-driven logic in the active matrix to extract hit position

Contradictory to small pixel pitch

fast enough

- Long readout line is a heavy capacitive load, 2 pf/cm
 - Analog buffer is slow and needs large current
 - Digital buffer preferred but complex FE of large layout footprint
- Charge Coupled Device ~ O(1 s)
- CMOS imaging sensor ~ O(1 ms)
- CEPC vertex detector ~ O(1 μs)
 - to keep the **hit occupancy** << 1%

Pixel matrix

How to meet the CEPC requirement

- Within the constraints of present sensor technology
 - Implementing the full specs in a single design seems impossible
- Either to split the specs or to develop new technology are necessary

Monolithic pixel sensors for running experiments

	STAR / Mimosa-28	BELLE2 / DEPFET	ALICE / ALPIDE
S. P. resolution < 3 µm	X	X	X
Thinning ~ 50 µm	\checkmark	\checkmark	\checkmark
Low power ~ 50 mW/cm ²	Х	Х	\checkmark
Fast readout ~ 1 µs	Х	Х	\checkmark
Rad. hard ~ 3.4 Mrad/ year ~6.2×10 ¹² n_{eq} / (cm ² year)	Х	\checkmark	Х

CDR study

- Sensor options and critical R&D
 - SOI → 3D-SOI
 - 180 nm CMOS → 65/55 nm CMOS
- Aiming at <u>smaller pitch</u> w/o compromise on <u>low power</u> or <u>fast readout</u>

International review report on the Vertex detector (CDR)

Vertex Detector

Findings: there is active R&D and groups are making good progress, building on large effort by the international community. Compared to other efforts toward precise and transparent vertex detectors, CEPC (with its 100% duty cycle) should place stronger emphasis on power management. Advanced processes like <u>65 nm CMOS</u> or <u>3D-integrated</u> devices should be pursued actively and can have a big impact on the vertex detector performance.

Double-sided structure: <u>fast time stamp</u> and <u>spatial resolution</u> separated for layer 1

Baseline design parametersR(mm) $Z \mid (mm)$ $\sigma(\mu m)$ material

	R(mm)	Z (mm)	$\sigma(\mu m)$	material budget
(or 1	ſ 16	62.5	2.8	0.15%/X ₀
ver I	18	62.5	6	0.15%/X ₀
/or 7	J 37	125.0	4	0.15%/X ₀
	39	125.0	4	0.15%/X ₀
ver 3	58	125.0	4	0.15%/X ₀
	60	125.0	4	0.15%/X ₀

Development of SOI and 3D-SOI

- CPV-1/2/3 dedicated to the study of <u>diode</u> <u>structure</u> and <u>in-pixel discr</u>.
 - Principle verification of $\sigma_{s.p.} < 3 \mu m$ @ pitch = 16 μm
 - Thinned down to 75 µm successfully

Lower tier: Sensing diode + Analog circuit

CPV-4 is a prototype on <u>3D integration</u>

• Upper tier: Digital circuit

Benefits of 3D-SOI

- Low power FE w/ in-pixel discr., 20nA/pixel
- Hit-driven readout logic w/ <u>time stamp</u>, ~1 μs
- Small pixel layout, 17 × 21 μm²

Unique design enabled by 3D integration

Division of functional blocks for lower & upper tiers

Layout of 2×2 pixel array

Development of CMOS pixel sensor

Process test chip

- 180 nm CIS process (driven by the ALICE/ITS2)
 - JadePix-3/4 are designed in line with the concept of **double-sided structure**
 - <u>High resolution</u> and <u>fast readout</u> respectively

55 nm CIS process (synergy with NICA development)

- Targeted on radiation hard and small pixel technology
- First test chip submitted in June

Pixel array in JadePix-3

Full-sized in the ϕ direction

- Matrix coverage: 16 µm × 512 rows = 8.2 mm
- **Rolling shutter** to avoid heavy logic and routing in the matrix
 - Minimum pixel size: 16 μm × 23.11 μm
 - Matrix readout time: 512 rows × 192ns/row = **98.3** μs/frame
- 4 parallel sectors, scalable
 - 48 columns/sectors × 4 = 192 columns

Sector	Diode	Analog	Digital	Pixel layout
0	2 + 2 µm	FE_V0	DGT_V0	16×26 μm²
1	2 + 2 µm	FE_V0	DGT_V1	16× 26 µm²
2	2 + 2 µm	FE_VO	DGT_V2	16× 23.11 μm²
3	2 + 2 µm	FE_V1	DGT_V0	16×26 μm²

Lower power design of JadePix-3

- <u>A low power frontend</u> of 20 nA, equivalent to 9 mW/cm²
 - Except for the sector 3, where 60 nA used for the comparison of radiation tolerance
- Zero suppression at the bottom of matrix
 - HIT address extracted by Priority Encoder (PE)
 - Compress the bit flow dramatically
- Flexible FIFO <u>control scheme</u> allowed to
 - Study the **optimal size of FIFO**

1-D Spatial Resolution of JadePix-3

- Measured with micro-focused laser beam (1064 nm)
 - Laser power carefully tuned for $2 \le \text{signal} / \text{thr.} \le 4$
 - Threshold set to 220 e-
- 1-D spatial resolution on X and Y
 - Minimum 3.4 μm and 2.7 μm respectively

Power consumption of JadePix-3

- Average power consumption 46.9 mW/cm²
 - PLL and Serializer not included (parallel data link)
- Extrapolated to a full size chip of 1 cm × 2.56 cm
 - Average power **91.44 mW/cm²**
 - PLL and Serializer included (serial data link)
- Need to optimize further on
 - PLL
 - Serializer
 - Data buffering
 - Test function

Extrapolation of average power consumption

	512 × 192 (JadePix-3)	512 × 1024 (Full-sized chip)
Matrix	3.15 mA	16.79 mA
 Zero suppression and data buffering	12.47 mA	66.47 mA
Other modules	46.82 mA	46.82 mA
Sum	62.44 mA	130.08 mA

Hit processing flow in JadePix-4

- A major modification: Rolling shutter \rightarrow Hit-driven readout logic
 - Faster by 2 ~ 3 orders
 - Larger pixel size: 20 µm × 29 µm

Two readout modes of JadePix4

Triggerless mode

- Global gate signal, strobe==1
- All hits registered at their leading edge
- 0.2 hits/µs per double column estimated
- Occupancy 0.02%

Trigger mode

- Global gate controlled by trigger signal
- Only hits coincident with a trigger
- Capable to handle very high hit density
- dead time 50 ns / hit for a double-column

Implementation of JadePix-4

- Key components verified and re-used from JadePix-3
 - Diode
 - Analog frontend
 - Hit register
- Hit-driven readout logic
 - Row address encoder in the matrix
 - Column address encoder outside the matrix
- Final layout of pixel matrix
 - 356 row × 498 col.

- JadePix-4 pixel layout (MET4 and above not shown)
- 1. Diode
- 2. Analog frontend
- 3. Digital logic
- 4. Readout logic shared between 2 col.

Comparison of JadePix-3 and JadePix-4

14.8mm

	JadePix-3	JadePix-4
Pixel size	16 μm × 23.1 μm	20 µm × 29 µm
Readout time	98.3 µs	~ 1 µs
Average power	< 100 mW/cm ²	< 100 mW/cm ²
Pixel array	512 row × 192 col.	356 row × 498 col.
Mask area	10.4 mm × 6.1 mm	14.8 mm × 8.6 mm

Summary

- JadePix-4 is complementary to the JadePix-3
 - In line with the concept of double-sided structure in the CDR
 - Separate implementation of <u>fast readout</u> and <u>high resolution</u> on 180 nm CIS process
 - Valuable experience on <u>low power</u> design
- Advanced pixel technologies are gaining momentum
 - 3D-SOI progressed steadily
 - 55 nm CIS process kicked off recently

Design team of JadePix-3/4

- IHEP: Yang Zhou, Ying Zhang, Yunpeng Lu, Qun Ouyang (Project leader)
- CCNU: Ping Yang, Le Xiao, Chaosong Gao, Di Guo, Xiangming Sun
- Dalian Minzu University: Zhan Shi

Thanks for your time!

Backup slides

C-tagging performance with different specs

c-tagging performance with different specs

	ε·p ↑ 41%	baseline	ε·p ↓ 22%
	Scenario A (Aggressive)	Scenario B (Baseline)	Scenario C (Conservative)
Material per layer/ X_0	0.075	0.15	0.3
Spatial resolution/µm	1.4 - 3	2.8 - 6	5 - 10.7
R _{in} /mm	8	16	23

Zhigang Wu, Manqi Ruan, Qun Ouyang

Small pixel implemented in the JadePix-3

Pixel footprint:1: Sensing diode2: Analog frontend3: digital frontend

DPLSE APLSE CON_DATA rowselp colsel trowselm hit_pix_b strobe_b pix_rst_b matrix_grst_b

3 variants of digital part

Sensing diode of minimized geometry verified on JadePix1

<u>Analog part</u> with **tradeoff** between layout area and FPN

Mirrored layout to share bias lines between two columns

3 variants of <u>digital part</u> (D-FlipFlop vs RS-latch)

Fix ϕ direction to **16 \mum** and allow z to vary

22

Measurement of position residual

- 1-D scan of laser position
 - Step = 1 μm and repeat 1000 at each step
- Laser power tune = 93.5% (~ $520 e^{-}$)
 - laser scan pixel0 pixel1 direction 1-D scan of laser position Entries 1000 pixel0 pixel1 800 600 400 Double-hit region 200 900 710 715 720 725 Laser Position X (µm)

- Distribution of position residual
 - Reference position: motion stage
 - Measured position: weight center of hit pixels
- RMS taken as the 1-D spatial resolution

